Cho a, b là 2 số bất kì , chứng tỏ rằng \(\frac{a^2+b^2}{2}\ge ab\)
Cho a,b,c là các số thực dương bất kì. Chứng tỏ rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ca}\)
Ta thấy: \(\frac{a^2}{b}-2a+b=\frac{\left(a-b\right)^2}{b}\)
\(\sqrt{a^2-ab+b^2}-\frac{a+b}{2}=\frac{a^2-ab+b^2-\frac{\left(a+b\right)^2}{b}}{\sqrt{a^2-ab+b^2}+\frac{a+b}{2}}=\frac{3\left(a-b\right)^2}{4\sqrt{a^2-ab+b^2}+2a+2b}\)
Bất đẳng thức tương đương với:
\(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)
\(\frac{3\left(a-b\right)^2}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}+\frac{3\left(b-c\right)^2}{4\sqrt{b^2+c^2-bc}+2\left(b+c\right)}+\frac{3\left(c-a\right)^2}{b\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)
\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\right]\)
\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\right]\ge0\)
Ta đặt:
\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\)
\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\)
\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)
Chứng mình sẽ hoàn tất nếu ta chứng minh được A,B,C\(\ge0\), vậy:
\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}=\frac{4\sqrt{a^2+b^2-2ab}+2a+b}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\ge0\)
\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}=\frac{4\sqrt{b^2+c^2-2bc}+2b+c}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\ge0\)
\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}=\frac{4\sqrt{c^2+a^2-ca}+2c+a}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\ge0\)
Vậy biểu thức đã được chứng mình.
1. Cho a > 0 , b > 0 và a > b , chứng tỏ rằng : 1/a < 1/b
2. Cho a,b là hai số bất kì , chứng tỏ rằng : ( a + b )2/2 ≥ 2ab
3. Cho a,b là hai số bất kì , chứng tỏ rằng : a2 + b2/2 ≥ ab
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
Chứng tỏ rằng với a và b là các số bất kì thì :
a) \(a^2+b^2-2ab\ge0\)
b) \(\dfrac{a^2+b^2}{2}\ge ab\)
Cho a, b là hai số bất kì, chứng tỏ rằng: \(\frac{a^2+b^2}{2}\) \(\ge\)ab
Ta có: \(\left(a-b\right)^2\ge0,\forall x\)
\(\Leftrightarrow a^2-2ab+b^2\ge0,\forall x\)
\(\Leftrightarrow a^2+b^2\ge2ab,\forall x\)
\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\left(đpcm\right)\)
Cho a,b,c là các số thực dương bất kì. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
áp dụng cách đánh giá :
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\)\(\left(\sqrt{\frac{a^2+b^2}{2}\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}\right)\)
\(hay\sqrt{3\left(a^2+b^2+c^2\right)\ge\sqrt{\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}}\)
Ta cần chỉ ra được :\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, cần chú ý đến \(a^2+b^2+c^2\)Ta được :
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
ta cần chứng minh được :
\(\frac{\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(hay\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Dễ thấy\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Do đó\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)
Theo bất đẳng thức Bunhiacopxki
\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)
Do đó ta được
\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Bài toán được chứng minh :333!~
Phân tích bài toán.
Ta làm 2 vế đẳng thức xuất hiện đại lượng kiểu\(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\)
Để biến đổi vế trái ta sẽ được:
\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\)
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}-\left(a+b+c\right)\)
Để biến đổi vế phải ta sẽ được:
\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)
Đến đây ta chỉ cần chỉ ra được \(\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\ge0\)
Bài làm:
Bất đẳng thức cần chứng mình tương đương với:
\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a\ge\)
\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}-\left(a+b+c\right)\)
\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)
\(\sqrt{\frac{a^2+b^2}{2}}-\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}}-\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}-\frac{c+a}{2}\)
\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)
\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)
\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\right]\)
\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\right]\ge0\)
Đặt:
\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)
\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\)
\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\)
Chứng mình hoàn tất nếu ta chứng mình được A,B.C\(\ge\)0, Vậy:
\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}=\frac{2\sqrt{2\left(a^2+b^2\right)}+2a+b}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}>0\)
\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}=\frac{2\sqrt{2\left(b^2+c^2\right)}+2b+c}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}>0\)
\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}=\frac{2\sqrt{2\left(c^2+a^2\right)+2c+a}}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}>0\)
Vậy biểu thức đã được chứng minh.
Cho a,b,c là các số thực dương bất kì, chứng minh rằng:
\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\)
Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:
\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)
Vậy ta cần chứng minh:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Vậy bất đẳng thức ban đầu được chứng minh.
Chứng tỏ rằng với a và b là các số bất kì thì: a 2 + b 2 / 2 ≥ a b
Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0
⇒ a 2 + b 2 - 2 a b + 2 a b ≥ 2 a b ⇒ a 2 + b 2 ≥ 2 a b
⇒ a 2 + b 2 . 1 / 2 ≥ 2 a b . 1 / 2 ⇒ a 2 + b 2 / 2 ≥ a b
Cho a, b, c là các số thực dương bất kì. Chứng minh rằng:
\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\)
Ta còn có:
Bất đẳng thức \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{1}{k\left(a^2+b^2+c^2\right)+\left(\frac{2}{9}-k\right)\left(ab+bc+ca\right)}\)
đúng với mọi a,b,c,k không âm (k = \(\text{constant}\))
1>chứng tỏ rằng với bất kì giá trị nào của n thì các bất đẳng thức sau luôn luôn đúng
a/ 3(m+1)+m< 4(2+m)
b/ (m-2)2 > m(m-4)
2>chứng minh rằng các bất đẳng thức sau là đúng
a/ b(b+a)≥ ab
b/ a2-ab+b2≥ ab
3/chứng minh rằng bất đẳng thức sau luôn luông đúng
a/10a2-5a+1≥ a2+a
b/a2-a≤ 50a2-15a+1
4/giả sử n là số tự nhiên.Hãy chứng tỏ rằng:
\(\frac{1}{2}\)+\(\frac{1}{3\sqrt{2}}\)+\(\frac{1}{4\sqrt{3}}\)+....+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2
5>chứng tỏ rằng với mọi số a,b,c,d ta có:
(ab+cd)2≤ (a2+c2)(b2+d2)
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
Câu 5: Biến đổi tương đương:
\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab\right)^2+2abcd+\left(cd\right)^2\le\left(ab\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(cd\right)^2\)
\(\Leftrightarrow\left(ad\right)^2-2ad.bc+\left(bc\right)^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)
Vậy ta có điều phải chứng minh