1>chứng tỏ rằng với bất kì giá trị nào của n thì các bất đẳng thức sau luôn luôn đúng
a/ 3(m+1)+m< 4(2+m)
b/ (m-2)2 > m(m-4)
2>chứng minh rằng các bất đẳng thức sau là đúng
a/ b(b+a)≥ ab
b/ a2-ab+b2≥ ab
3/chứng minh rằng bất đẳng thức sau luôn luông đúng
a/10a2-5a+1≥ a2+a
b/a2-a≤ 50a2-15a+1
4/giả sử n là số tự nhiên.Hãy chứng tỏ rằng:
\(\frac{1}{2}\)+\(\frac{1}{3\sqrt{2}}\)+\(\frac{1}{4\sqrt{3}}\)+....+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2
5>chứng tỏ rằng với mọi số a,b,c,d ta có:
(ab+cd)2≤ (a2+c2)(b2+d2)
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
Câu 5: Biến đổi tương đương:
\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab\right)^2+2abcd+\left(cd\right)^2\le\left(ab\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(cd\right)^2\)
\(\Leftrightarrow\left(ad\right)^2-2ad.bc+\left(bc\right)^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)
Vậy ta có điều phải chứng minh