Bài1: Cho Tam giác ABC nhọn , kẻ \(BE\perp AC\) tại E và \(CD\perp AB\)tại D. Gọi H là giao điểm của BE và CD, Kẻ\(HM\perp BC\) tại M.
a, Chứng minh 3 điểm A, H, M thẳng hàng
b, Chứng minh: \(BH.BE+CH.CD=BC^2\)
Bài 2: Cho tam giác ABC ( AB<AC ), đường phân giác AD. Vẽ tia Dx sao cho \(\widehat{CDx}=\widehat{BAC}\) (tia Dx và điểm A cùng phía đối với BC), tia Dx cắt AC ở E. Chứng minh :
a, Tam giác ABC đồng dạng tam giác DEC
b, DE=DB