a: góc BDC=góc BEC=90 độ
=>CD vuông góc AB, BE vuông góc AC
góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
a: góc BDC=góc BEC=90 độ
=>CD vuông góc AB, BE vuông góc AC
góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
Cho tam giác ABC có B A C ^ = 45 0 , các góc B và C đều nhọn. Đường tròn đường kính BC cắt AB và AC lần lượt tai D và E. Gọi H là giao điểm của CD và BE
a, Chứng minh AE = BE
b, Chứng minh tứ giác ADHE nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác này
c, Chứng minh OE là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
d, Cho BC = 2a. Tính diện tích viên phân cung D E ⏜ của đường tròn (O) theo a
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
cho tam giác ABC có ba góc nhọn.Vẽ đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại D và E.Gọi H là giao điểm của BE và CD
a/ chứng minh tứ giác ADHE nội tiếp xác định tâm I của đường tròn
b/chứng minh AE.BC=AH.BE
C/Gọi d1,d2 lần lượt là tiếp tuyến của đường tròn (O) tại D và E.chứng minh rằng ba đường thẳng d1,d2 và AH đồng quy tại một điểm
Cho tam giác ABC có 3 góc nhọn . đường tròn tâm O đường kính BC cắt cạnh AB tại D và cắt cạnh AC tại E . Gọi H là giao điểm của BE và CD .
a, CM : tứ giác ADHE nội tiếp đường tròn
b, Gọi I là trung điểm của AH , chứng minh IO vuông góc với DE
c, CM : AD.AB = AE.AC
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE; AH cắt BC tại I.
c) Chứng minh tứ giác OIED nội tiếp.
Cho tam giác nhọn ABC với góc ABC=60,BC,=2a, AB<AC. gọi (O) là đường tròn đường kính BC. đường tròn (O) cắt cạnh AB, AC tại điểm thứ hai là D và E. Đoạn BE và CD cắtt nhau tại H
a) chứng minh tứ giác ADHE nội tiếp (I) . Xác định tâm I
b) Tiếp tuyến tại C của đường tròn (O) cắt DI tại M. tính OB/OM
c) Gọi F là giao. Điểm của AH và BC. Cho BF=3a/4.Tính bán kính của đường tròn nội tiếp tam giác DEF theo a
Cho tam giác ABC nhọn, vẽ đường tròn đường kính BC=2R cắt các cạnh AB và AC lần lượt tại D và E. BD và CE cắt nhau tại H. Tia AH cắt BC tại F. a) cm tứ giác ADHE nội tiếp
b) Gọi I là giao điểm của BE và DF. Chứng minh IH.BE=BI.HE
Cho tam giac ABC (AB<AC) có ba góc nhọn. Vẽ đường tròn tâm (O) đường kính BC. Đường tròn này cắt AB tại E và cắt Ac ở D. BD cắt CE tại H.
a. Chứng minh tứ giác ADHE là tứ giác nội tiếp.
b. Chứng minh AD.AC= AE.AB
c. Chứng minh FH là tia phân giác của góc DFE, với F là giao điểm của AH và BC.
d. Cho BC=2a và góc BAC= 60 độ. Chứng minh tứ giác DEFO là tứ giác nội tiếp và tính chu vi của đường tròn ngoại tiếp tứ giác này theo a.
Cho tam giác abc nhọn có ab<ac đường tròn (o) đường kính bc cắt cạnh ab,ac lần lượt tại d và e.Gọi h là giao điểm của be và cd,k là giao điểm ah và bc chứng minh ad.ab=ae.ac ,chứng minh kh là tia phân giác của dke ,đường tròn ngoại tiếp tam giác dek cắt hc tại m chứng minh m là trung điểm của hc, gọi i là giao điểm của de và ah chứng minh 2/KI=1/KH=1/KA(mọi người giúp em với ạ)