a) Xét ΔABC có
BE là đường cao ứng với cạnh AC(gt)
CD là đường cao ứng với cạnh AB(gt)
BE cắt CD tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AH\(\perp\)BC
mà HM\(\perp\)BC(gt)
và AH,HM có điểm chung là H
nên A,H,M thẳng hàng(đpcm)
b) Xét ΔBMH vuông tại M và ΔBEC vuông tại E có
\(\widehat{EBC}\) chung
Do đó: ΔBMH\(\sim\)ΔBEC(g-g)
Suy ra: \(\dfrac{BM}{BE}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BE\cdot BH=BM\cdot BC\)
Xét ΔCMH vuông tại M và ΔCDB vuông tại D có
\(\widehat{DCB}\) chung
Do đó: ΔCMH\(\sim\)ΔCDB(g-g)
Suy ra: \(\dfrac{CM}{CD}=\dfrac{CH}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CH\cdot CD=CM\cdot CB\)
Ta có: \(BE\cdot BH+CM\cdot CD\)
\(=BM\cdot BC+CM\cdot BC\)
\(=BC^2\)(đpcm)