Giải pt
\(\sqrt{5x^2-14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
\(x+\sqrt{5+\sqrt{x-1}}=6\)
giải pt :
a,\(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25x+2}\)
b,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
c, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải pt: \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}-5\sqrt{x+1}=0\)
\(\Rightarrow4x=-7\)
=>x=8
giải phương trình
a, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
b, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
a. ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x}=a>0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+b=\sqrt{3a^2-b^2}\)
\(\Leftrightarrow\left(a+b\right)^2=3a^2-b^2\)
\(\Leftrightarrow a^2-ab-b^2=0\Leftrightarrow\left(a-\dfrac{1+\sqrt{5}}{2}b\right)\left(a+\dfrac{\sqrt{5}-1}{2}b\right)=0\)
\(\Leftrightarrow a=\dfrac{1+\sqrt{5}}{2}b\Leftrightarrow\sqrt{x^2+2x}=\dfrac{1+\sqrt{5}}{2}\sqrt{2x-1}\)
\(\Leftrightarrow x^2+2x=\dfrac{3+\sqrt{5}}{2}\left(2x-1\right)\)
\(\Leftrightarrow x^2-\left(\sqrt{5}+1\right)x+\dfrac{3+\sqrt{5}}{2}=0\)
\(\Leftrightarrow\left(x-\dfrac{\sqrt{5}+1}{2}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)
b. ĐKXĐ: \(x\ge5\)
\(\Leftrightarrow\sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}\)
\(\Leftrightarrow5x^2+14x+9=x^2-x-20+25\left(x+1\right)+10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)
\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-4x-5}=a\ge0\\\sqrt{x+4}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4x-5}=\sqrt{x+4}\\2\sqrt{x^2-4x-5}=3\sqrt{x+4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x+4\\4\left(x^2-4x-5\right)=9\left(x+4\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giai các PT sau
a, \(x=\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{2-x}.\sqrt{5-x}\)
b, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
c, \(\sqrt{4x+1}+\sqrt{2x^2+x+39}=10\)
Giai các PT sau
a, \(x=\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{2-x}.\sqrt{5-x}\)
b, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
c, \(\sqrt{4x+1}+\sqrt{2x^2+x+39}=10\)
giải phương trình :
a,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
b, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
c, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
a, \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
b,\(\sqrt{5x^2+14x+9}=5\sqrt{x+1}+\sqrt{x^2-8x-20}\)
\(a,ĐK:x\ge-7\\ PT\Leftrightarrow\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)
Đạt \(\sqrt{x+7}=a\ge0\)
\(PT\Leftrightarrow\sqrt{\left(a+1\right)^2}+\sqrt{a^2-a-6}=4\\ \Leftrightarrow a+1+\sqrt{a^2-a-6}=4\\ \Leftrightarrow\sqrt{a^2-a-6}=3-a\\ \Leftrightarrow a^2-a-6=a^2-6a+9\\ \Leftrightarrow5a=15\Leftrightarrow a=3\\ \Leftrightarrow\sqrt{x+7}=3\\ \Leftrightarrow x+7=9\\ \Leftrightarrow x=2\left(tm\right)\)
giải pt
a) \(\sqrt[3]{x+6}+\sqrt{x-1}=x^2-1\)
b) \(\sqrt[3]{x-9}+2x^2+3x=\sqrt{5x-1}+1\)
c) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
d) \(\sqrt{x+1}-2\sqrt{4-x}=\frac{5\left(x-3\right)}{\sqrt{2x^2+18}}\)
e) \(x^3+5x^2+6x=\left(x+2\right)\left(\sqrt{2x+2}+\sqrt{5-x}\right)\)