cho a,b,c >0 a+b+c=4 . Cmr (a+b)(b+c)(c+a)>_ a^3b^3c^3
cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{a+b+c}{4}\)
cho a,b,c > 0 . Cmr: \(A=\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\le\frac{3}{5}\)
A=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\)
=>\(\frac{3}{2}\)-A=\(\frac{1}{2}-\frac{a}{3a+b+c}+\frac{1}{2}-\frac{b}{3b+a+c}+\frac{1}{2}-\frac{c}{3c+a+b}\)
<=>\(\frac{3}{2}\)-A=\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\)
ta lại có
\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\ge\left(a+b+c\right)\left(\frac{\left(1+1+1\right)^2}{6a+2b+2c+6b+2a+2c+6c+2a+2b}\right)=\frac{9}{10}\)<=>\(\frac{3}{2}-\)A\(\ge\frac{9}{10}\)<=>A\(\le\frac{3}{2}-\frac{9}{10}=\frac{3}{5}\)
dấu "=" xảy ra <=>a=b=c
cho 3 số a, b, c thoả mãn 0 < a, b, c < 1.CMR
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{3}{3+abc}\)
Cho a,b,c>0 thỏa\(ab+ac+bc=0\)
CMR\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}>hoặc=\frac{3}{4}\)
Ta có: a , b , c > 0 => a , b , c là 3 số thực dương thỏa mãn điều kiện: ab + ac + bc = 0
Áp dụng tính chất tỉ dãy số bằng nhau ta có:
\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}=\frac{a^4+b^4+c^4}{b+3+c+3a+a+3b}\)
\(\Leftrightarrow\frac{a^4+b^4+c^4}{4a+4b+4c}=\frac{a^4+b^4+c^4}{4\left(a+b+c\right)}=\frac{3}{4}\) (Đúng với đề bài)
\(\RightarrowĐPCM\)
Ps; Không chắc nha! Mình chưa học lớp 9
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
\(b,\dfrac{ab}{a+3b+2c}=\left(\dfrac{1}{9}ab\right)\cdot\dfrac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\left(\dfrac{1}{9}ab\right)\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\cdot\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Cmtt: \(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\cdot\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+b}+\dfrac{b}{2}\right);\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\cdot\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
\(\Rightarrow VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)\\ \le\dfrac{1}{9}\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}\cdot\dfrac{3}{2}\left(a+b+c\right)=\dfrac{a+b+c}{6}\)
Dấu $"="$ khi $a=b=c$
Cho a+b+c=3 và a,b,c>0 . CMR \(\sqrt{a+3b}+\sqrt{b+3c}+\sqrt{c+3a}\le6\)
Theo BĐT Bu nhi a cốp xki ta có :
\(VT=\sqrt{a+3b}+\sqrt{b+3c}+\sqrt{c+3a}\le\sqrt{3\left(4a+4b+4c\right)}=\sqrt{12\left(a+b+c\right)}=\sqrt{36}=6\)
Vậy đpcm . Dấu bằng xảy ra khi \(a=b=c=1\)
Cho a, b, c > 0. CMR: \(a^3b^2+b^3c^2+c^3a^2>a^2b^3+b^2c^3+c^2a^3\)
Cho a, b, c > 0 . CMR :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{9}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{c+a}+\dfrac{b}{2}\right)\)
\(\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{bc+ab}{c+a}+\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{6}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c>0. CMR
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
\(\dfrac{1}{a+3b}+\dfrac{1}{a+b+2c}\ge\dfrac{4}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)
Tương tự: \(\dfrac{1}{b+3c}+\dfrac{1}{b+c+2a}\ge\dfrac{2}{a+b+2c}\)
\(\dfrac{1}{c+3a}+\dfrac{1}{a+c+2b}\ge\dfrac{2}{2a+b+c}\)
Cộng vế với vế và rút gọn:
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\)
Dấu "=" xảy ra khi \(a=b=c\)