Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 20:34

\(y'=\dfrac{\left(x+\sqrt{x^2+1}\right)'}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{1+\dfrac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}.\sqrt{x+\sqrt{x^2+1}}}\)

\(=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)

phước
Xem chi tiết
Tuyển Trần Thị
24 tháng 7 2017 lúc 21:00

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

Thanh Tuyền
Xem chi tiết
Phương Anh
Xem chi tiết
Tâm Cao
Xem chi tiết
Hồng Quang
18 tháng 2 2021 lúc 8:25

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

\(\xrightarrow[\left(1\right)-\left(2\right)]{\left(1\right)+\left(2\right)}\left\{{}\begin{matrix}2\left(\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}\right)=20\left(3\right)\\2\left(x+y\right)=16\Rightarrow x=8-y\left(4\right)\end{matrix}\right.\) 

Thay (4) vào (3) và thu gọn ta được: \(\left(\sqrt{x^2+9}+\sqrt{y^2+9}\right)=10\left(5\right)\)  

Kết hợp (4) và (5): \(\left\{{}\begin{matrix}x=8-y\\\sqrt{x^2+9}+\sqrt{y^2+9}=10\end{matrix}\right.\) rồi giải nốt :D good luck

 

 

Phương Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
22 tháng 8 2021 lúc 21:44

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{x\sqrt{x}+y\sqrt{y}-\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)( do \(x\ge1\))

Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 21:45

a: Ta có: \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

\(=\sqrt{xy}\)

b: Ta có: \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\dfrac{ \left|\sqrt{x}-1\right|}{\left|\sqrt{x}+1\right|}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Nguyễn A
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2022 lúc 23:05

a.Hệ thứ nhất kì quặc thật:

\(\Leftrightarrow\sqrt{y^2+xy}+\sqrt{x+y}=\sqrt{x^2+y^2}+2\)

\(\Leftrightarrow\sqrt{x^2+y^2}-\sqrt{y^2+xy}=\sqrt{x+y}-2\)

\(\Leftrightarrow\dfrac{x\left(x-y\right)}{\sqrt{x^2+y^2}+\sqrt{y^2+xy}}=\dfrac{x+y-4}{\sqrt{x+y}+2}\)

\(\Rightarrow\left(x-y\right)\left(x+y-4\right)=\left(\dfrac{\sqrt{x^2+y^2}+\sqrt{y^2+xy}}{x\sqrt{x+y}+2x}\right)\left(x+y-4\right)^2\ge0\) (1)

\(2.\dfrac{x}{2}\sqrt{y-1}+2.\dfrac{y}{2}\sqrt{x-1}\le\dfrac{x^2}{4}+y-1+\dfrac{y^2}{4}+x-1\)

\(\Rightarrow\dfrac{x^2+4y-4}{2}\le\dfrac{x^2+y^2+4x+4y-8}{4}\)

\(\Leftrightarrow x^2-y^2+4y-4x\le0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)\le0\) (2)

(1);(2) \(\Rightarrow\left(x-y\right)\left(x+y-4\right)=0\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=2\)

 

Nguyễn Việt Lâm
17 tháng 1 2022 lúc 23:05

b.

\(x^3-x^2y+2y^2-2xy=0\)

\(\Leftrightarrow x^2\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x^2-2y\right)\left(x-y\right)=0\)

\(\Leftrightarrow y=x\) (loại \(x^2-2y=0\) do ĐKXĐ \(x^2-2y-1\ge0\))

Thế vào pt dưới

\(2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\)

\(\Leftrightarrow2\sqrt{x^2-2x-1}+\dfrac{x^3-14-\left(x-2\right)^3}{\sqrt[3]{\left(x^3-14\right)^2}+\left(x-2\right)\sqrt[3]{x^3-14}+\left(x-2\right)^2}=0\)

\(\Leftrightarrow\sqrt[]{x^2-2x-1}\left(2+\dfrac{6\sqrt[]{x^2-2x-1}}{\sqrt[3]{\left(x^3-14\right)^2}+\left(x-2\right)\sqrt[3]{x^3-14}+\left(x-2\right)^2}\right)=0\)

\(\Leftrightarrow\sqrt{x^2-2x-1}=0\)

Mỹ Lệ
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
Pham Tien Dat
18 tháng 3 2021 lúc 22:09

1. \(y'=\sqrt{x-2}+\dfrac{x+1}{2\sqrt{x-2}}\)

2. \(y'=-\dfrac{\dfrac{1}{2\sqrt{x^2+4x+5}}\cdot\left(x^2+4x+5\right)'}{x^2+4x+5}=-\dfrac{x+2}{\sqrt{\left(x^2+4x+5\right)^3}}\)

3. \(y'=\dfrac{\dfrac{x-1}{2\sqrt{x+1}}-\sqrt{x+1}}{\left(x-1\right)^2}=\dfrac{-x-3}{\left(x-1\right)^2\sqrt{x+1}}\)

4. \(y'=\dfrac{\sqrt{x^2+1}-\dfrac{x+1}{2\sqrt{x^2+1}}\cdot\left(x^2+1\right)'}{x^2+1}=\dfrac{\dfrac{2\left(x^2+1\right)-\left(x+1\right)\cdot2x}{2\sqrt{x^2+1}}}{x^2+1}=\dfrac{1-x}{\sqrt{\left(x^2+1\right)^3}}\)

5. \(y'=-\dfrac{\dfrac{\left(4-3x^2\right)'}{2\sqrt{4-3x^2}}}{4-3x^2}=\dfrac{3x}{\sqrt{\left(4-3x^2\right)^3}}\)

Nguyễn Việt Lâm
18 tháng 3 2021 lúc 22:21

1. \(y'=\sqrt{x-2}+\dfrac{x+1}{2\sqrt{x-2}}=\dfrac{3x-3}{2\sqrt{x-2}}\)

2. \(y'=-\dfrac{\left(\sqrt{x^2+4x+5}\right)'}{x^2+4x+5}=-\dfrac{x+2}{\left(x^2+4x+5\right)\sqrt{x^2+4x+5}}\)

3. \(y'=\dfrac{\dfrac{\left(x-1\right)}{2\sqrt{x+1}}-\sqrt{x+1}}{\left(x-1\right)^2}=\dfrac{-x-3}{2\left(x-1\right)^2\sqrt{x+1}}\)

4. \(y'=\dfrac{\sqrt{x^2+1}-\dfrac{x\left(x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\dfrac{1-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)

5. \(y'=\dfrac{\left(\sqrt{4-3x^2}\right)'}{3x^2-4}=\dfrac{-3x}{\left(3x^2-4\right)\sqrt{4-3x^2}}\)