Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anhquan
Xem chi tiết
An Thy
7 tháng 7 2021 lúc 10:17

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

Trúc Giang
7 tháng 7 2021 lúc 10:18

\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

Hoàng Tiến Long
Xem chi tiết

a: Ta có: \(\sqrt{12+6\sqrt3}-\sqrt3\)

\(=\sqrt{9+2\cdot3\cdot\sqrt3+3}-\sqrt3\)

\(=\sqrt{\left(3+\sqrt3\right)^2}-\sqrt3=3+\sqrt3-\sqrt3=3\)

b: \(\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\cdot\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)

\(=\left(\frac{1-x}{2\sqrt{x}}\right)^2\cdot\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(x-1\right)^2}{4x}\cdot\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{\left(x-1\right)}=\frac{\left(x-1\right)}{4x}\cdot\left(-4\sqrt{x}\right)=\frac{-\left(x-1\right)}{\sqrt{x}}\)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Huỳnh Như
Xem chi tiết
Ko cần bít
Xem chi tiết
Hoang Quoc Khanh
29 tháng 7 2018 lúc 20:12

\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\sqrt{2+\sqrt{3}}\right)=\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)\)\(=\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)=-1\)

Không Tên
29 tháng 7 2018 lúc 20:14

\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2}.\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)

\(=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

\(=2\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

\(=-2\)

nguyễn quỳnh lưu
Xem chi tiết
alibaba nguyễn
3 tháng 7 2017 lúc 15:41

M không tồn tại thì làm sao mà rút gọn được

nguyễn quỳnh lưu
4 tháng 7 2017 lúc 22:37

được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi

alibaba nguyễn
4 tháng 7 2017 lúc 22:44

Thầy nào mà giải được cái này ghê vậy. Cái căn thứ 2 số trong căn là số âm mà cũng căn được ah. Thầy bạn có đọc đề không thế???

Lưu huỳnh ngọc
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 9 2021 lúc 14:24

\(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)

\(=\left|4-\sqrt{15}\right|+\left|3-\sqrt{15}\right|\)

\(=4-\sqrt{15}+\sqrt{15}-3=1\)

Cao Chi Hieu
Xem chi tiết
Quynh Existn
Xem chi tiết
Akai Haruma
17 tháng 7 2021 lúc 22:31

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

Akai Haruma
17 tháng 7 2021 lúc 22:38

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

Akai Haruma
17 tháng 7 2021 lúc 22:40

3. ĐKXĐ: $a\geq 0; a\neq 1$

\(C=\frac{\sqrt{a}(\sqrt{a}+1)-\sqrt{a}}{(\sqrt{a}+1)(\sqrt{a}-1)}:\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}\)

\(\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}:\frac{1}{\sqrt{a}-1}=\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}.(\sqrt{a}-1)=\frac{a}{\sqrt{a}+1}\)

 

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 0:31

d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)

\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)

\(=\dfrac{3\sqrt{x}}{x-3}\)

f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)