Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
23 tháng 10 2016 lúc 20:06

Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)

thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)

Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)

\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)

Song Minguk
Xem chi tiết
Hà Nam Phan Đình
8 tháng 11 2017 lúc 15:39

a) ĐKXĐ: \(x\ne-1\)

Phương trình tương đương: \(\dfrac{5x-x^2}{x+1}\left(x+\dfrac{5-x}{x+1}\right)=6\)

Đặt \(x+\dfrac{5-x}{x+1}=t\) \(\Rightarrow t=\dfrac{5-x+x^2+x}{x+1}=\dfrac{x^2+5}{x+1}\)

\(\Rightarrow-t=\dfrac{-x^2-5}{x+1}=\dfrac{5x-x^2-5x-5}{x+1}=\dfrac{5x-x^2-5\left(x+1\right)}{x+1}\)

\(=\dfrac{5x-x^2}{x+1}-5\)

\(\Rightarrow-t=\dfrac{5x-x^2}{x+1}-5\Rightarrow5-t=\dfrac{5x-x^2}{x+1}\)

Vậy Phương trình trở thành: \(\left(5-t\right)t=6\Leftrightarrow t^2-5t+6=0\)

\(\Leftrightarrow\left(t-2\right)\left(t-3\right)=0\)

Khi t=2 thì \(x+\dfrac{5-x}{x+1}=2\Leftrightarrow x^2-2x+3=0\) (vô nghiệm)

Khi t=3 thì \(x+\dfrac{5-x}{x+1}=3\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\)

Bùi Thị Vân
8 tháng 11 2017 lúc 17:16

a) \(\sqrt{\left(x-2013\right)^{10}}+\sqrt{\left(x-2014\right)^{14}}=1\)
\(\Leftrightarrow\left|x-2013\right|^5+\left|x-2014\right|^7=1\)
Dễ dàng thấy \(x=2013\) hoặc \(x=2014\) là các nghiệm của phương trình.
Nếu \(x>2014\) khi đó \(\left|x-2013\right|^5>\left|2014-2013\right|^5>1\) nên:
\(\left|x-2013\right|^5+\left|x-2014\right|^7>1\) .
Vì vậy mọi \(x>2014\) đều không là nghiệm của phương trình.
Nếu \(x< 2013\) khi đó \(\left|x-2014\right|^7>\left|2013-2014\right|^7>1\) nên:
\(\left|x-2013\right|^5+\left|x-2014\right|^7>1\).
Vì vậy mọi \(x< 2013\) đều không là nghiệm của phương trình.
Nếu \(2013< x< 2014\) khi đó:
\(\left|x-2013\right|< 1,\left|x-2014\right|< 1\).
Suy ra \(\left|x-2013\right|^5+\left|x-2014\right|^7< \left|x-2013\right|+\left|x-2014\right|\).
Ta xét tập giá trị của \(\left|x-2013\right|+\left|x-2014\right|\) với \(2013< x< 2014\).
Khi đó \(x-2013>0,x-2014< 0\).
Vì vậy \(\left|x-2013\right|+\left|x-2014\right|=x-2013+x-2014=1\).
Suy ra \(\left|x-2013\right|^5+\left|x-2014\right|^7< 1\).
vậy mọi x mà \(2013< x< 2014\) đều không là nghiệm của phương trình.
Kết luận phương trình có hai nghiệm là \(x=2013,x=2014\).

Ánh Dương
Xem chi tiết
Phạm Minh Quang
24 tháng 10 2019 lúc 12:24

Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)

\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)

\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)

Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được

\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)

Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)

Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)

Khách vãng lai đã xóa
Ngọc Hạnh
Xem chi tiết
Akai Haruma
28 tháng 3 2018 lúc 22:37

Lời giải:

Ta có:

\(|x-2013|^5+|x-2014|^7=1\)

\(\Rightarrow \left\{\begin{matrix} |x-2013|^5=1-|x-2014|^7\leq 1\\ |x-2014|^7=1-|x-2013|^5\leq 1\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} |x-2013|\leq 1\\ |x-2014|\leq 1\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} -1\leq x-2013\leq 1\\ -1\leq x-2014\leq 1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2012\leq x\leq 2014\\ 2013\leq x\leq 2015\end{matrix}\right.\) hay \(2013\leq x\leq 2014\)

Nếu \(x=2013, x=2014\): thử vào pt ban đầu thấy đều thỏa mãn.

Nếu \(2013< x< 2014\)

\(\Rightarrow |x-2013|=x-2013; |x-2014=2014-x\)

Đặt \(x-2013=a\).

PT trở thành

\((x-2013)^5+(2014-x)^7=1\)

\(\Leftrightarrow a^5+(1-a)^7=1\)

\(\Leftrightarrow (a^5-1)+(1-a)^7=0\)

\(\Leftrightarrow (a-1)[a^4+a^3+a^2+a+1-(a-1)^6]=0\)

Vì \(2013< x< 2014\Rightarrow 0< a< 1\).

\(\Rightarrow a-1< 0\) hay \(a-1\neq 0\)

Suy ra \(a^4+a^3+a^2+a+1-(a-1)^6=0\)

\(\Leftrightarrow a^4+a^3+a^2+a+1=(a-1)^6(*)\)

Ta thấy \(0< a<1 \Rightarrow \text{VT}>1\)

\(0< a< 1\Rightarrow -1< a-1< 0\Rightarrow (a-1)^6< 1\Leftrightarrow \text{VP}<1\)

(*) không xảy ra.

Vậy PT có nghiệm \(x\in \left\{2013; 2014\right\}\)

HOSHIMYA ICHINGO
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 23:13

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)

Bùi Minh Anh
Xem chi tiết
nhok song tử
24 tháng 3 2017 lúc 18:22

tất nhên là bằng 00000000000000000000000000000000000000

Võ Thị Kim Dung
Xem chi tiết
Unruly Kid
10 tháng 11 2017 lúc 18:27

Ôn tập phương trình bậc hai một ẩn

Unruly Kid
10 tháng 11 2017 lúc 18:25

Ôn tập phương trình bậc hai một ẩn

Nguyễn MInh Quang
Xem chi tiết
Nguyễn Tạ Kiều Trinh
10 tháng 5 2015 lúc 10:04

Quy đồng vế trái ta có

\(\frac{4026}{x^4+x^2+1}=\frac{2014}{x.\left(x^4+x^2+1\right)}\)

Lại quy đồng 2 vế ta được

\(\frac{4026.x}{x.\left(x^4+x^2+1\right)}=\frac{2014}{x.\left(x^4+x^2+1\right)}\)

Suy ra: 4026.x =2014

<=>\(x=\frac{2014}{4026}\)

rút gọn là xong.OK?