A=[√3×sinx×cos(x+π/6)+cosx×sin(π/3-x)]/sin(2x+π/3)
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
Tính:F=Cos(π/4+α) x cos(π/4-α)
G=Sin(π/3+α) x cos(π/3-α)
H=cos(π/2-α) x sin(π/2+α)
I=sin(π/4+α) - cos(π/4-α)
K=cos(π/6-x) - sin(π/3+x)
Chứng minh các đẳng thức sau:
a, sinx + cosx = \(\sqrt{2}\) sin(x + \(\frac{\text{π}}{4}\)) = \(\sqrt{2}\) cos(x - \(\frac{\text{π}}{4}\))
b, sinx - cosx = \(\sqrt{2}\) sin(x - \(\frac{\text{π}}{4}\)) = -\(\sqrt{2}\) cos(x - \(\frac{\text{π}}{4}\))
c, sin4x - cos4x + sin2x = \(\sqrt{2}\) cos(2x - \(\frac{\text{π}}{4}\))
\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)
\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)
\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)
Bạn ghi ko đúng đề
Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
câu 1:xét sinx=o
xét sinx khác 0
chia phương trình cho cos3x
ta được 1 phương trình mới:
4+3tanx-\(\frac{1}{sin^2x}\)-tan3x=0
<=>4+3tanx-(1+cot2x)-tan3x=0
<=>4+3tanx-1-\(\frac{1}{tan^2x}\)-tan3x=o
nhân cho tan2x ta được 1 phương trình bậc 5 với tanx
cho goc α thoa man π/2<α<π va sin α=1/3.tinh cos α
rut gon bieu thuc F=cosx.tan x/sin2x-cotx .cosx
Bài 1 :
Ta có : a thuộc góc phần tư thứ II .
=> Cos a < 0
- Ta lại có : \(\left\{{}\begin{matrix}sina=\dfrac{1}{3}\\sin^2a+cos^2a=1\end{matrix}\right.\)
\(\Rightarrow cosa=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=-\dfrac{2\sqrt{2}}{3}\)
Bài 2 :
Ta có : \(F=\dfrac{\cos x.\tan x}{\sin^2x-\cot x.\cos x}=\dfrac{\cos x.\dfrac{\sin x}{\cos x}}{\sin^2x-\dfrac{\cos x}{\sin x}.\cos x}\)
\(=\dfrac{\sin x}{\sin^2x-\dfrac{\cos^2x}{\sin x}}=\dfrac{1}{\sin x-\cot^2x}\)
Cho hàm số y=\(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\) với x thuộc \(\left(\dfrac{\text{π}}{4};\dfrac{\text{π}}{2}\right)\). Tìm giá trị nhỏ nhất của hàm số
y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)
y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)
y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)
y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t = tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\
Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)
⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
a: pi/2<a<pi
=>sin a>0
\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)
\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)
b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c: \(sin\left(a-\dfrac{pi}{3}\right)\)
\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)
d: \(cos\left(a-\dfrac{pi}{6}\right)\)
\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)
Cho sin a = 3/5 với π/2 < a < π Tính sin 2a , cos 2a , tan 2a , cot ( a - π/4 ) , sin a/2 , cos a/2 Cảm ơn trc❤
Tìm nghiệm x ∈ (0; π) của phương trình: 5cosx + sinx - 3 = 2 sin(2x + π 4 )
A.
B.
C.
D. Vô nghiệm