Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Như Quỳnh
Xem chi tiết
tth_new
28 tháng 4 2019 lúc 16:21

\(A=\left(-x^2-2xy-y^2\right)-2y^2+\left(10x+10y\right)+4y-18\)

\(=-\left(x+y\right)^2+2\left(x+y\right).5-\left(2y^2-4y+2\right)-16\)

\(=-\left[\left(x+y\right)^2-2\left(x+y\right).5+5^2\right]-2\left(y-1\right)^2+9\)

\(=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x;y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5-y\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Vậy \(A_{max}=9\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Đỗ Duy Kiên
14 tháng 4 2020 lúc 9:42

ko biết

Khách vãng lai đã xóa
Phạm Ngọc Quân
14 tháng 4 2020 lúc 9:42

bít chết liền

Khách vãng lai đã xóa
le thi khanh huyen
Xem chi tiết
Nguyễn Trung Thành
14 tháng 4 2020 lúc 9:58

gợi ý nhé:

[-(x-y)2-10(x-y)-25] - 2(y-1)+ 2010

= -[(x-y)+5]2  - 2(y-1)+ 2010

tự cậu suy ra MAX nhé

chưa hiểu thì hỏi nhé

Khách vãng lai đã xóa
Trân Vũ
Xem chi tiết
Dương Ngọc Vy
3 tháng 5 2019 lúc 18:24

A = -x2 - 2xy - y2 - 2y2 + 10x + 10y + 4y - 25 + 7
= (-x2 - 2xy - y2 + 10x + 10y - 25) - 2y2 + 4y + 7
= -(x2 + 2xy + y2 - 10x - 10y + 25) - (2y2 - 4y - 7)
= -[(x+y)2 - 10(x+y) + 25] - (2y2 - 4y + 2 - 9)
= -(x + y - 5)2 - 2(y2 - 2y + 1) + 9
= -(x + y - 5)2 - 2(y - 1)2 + 9 ≤ 9
Dấu ''='' xảy ra <=> x + y - 5 = 0 và y -1 =0
<=> x + y = 5 và y = 1
<=> x = 4 và y = 1
Vậy max A = 9 <=> x = 4 và y = 1 .
- Mình chúc bạn học tốt nhé !

phamducluong
Xem chi tiết
Trịnh Dung
Xem chi tiết
Xuân Hoàng Nguyễn
Xem chi tiết
Ngô Thanh Hà
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
25 tháng 5 2019 lúc 12:14

A = -x2 - 2xy - y2 - 2y2 + 10x + 10y + 4y - 25 + 7
= (-x2 - 2xy - y2 + 10x + 10y - 25) - 2y2 + 4y + 7
= -(x2 + 2xy + y2 - 10x - 10y + 25) - (2y2 - 4y - 7)
= -[(x+y)2 - 10(x+y) + 25] - (2y2 - 4y + 2 - 9)
= -(x + y - 5)2 - 2(y2 - 2y + 1) + 9
= -(x + y - 5)2 - 2(y - 1)2 + 9 ≤ 9
Dấu ''='' xảy ra <=> x + y - 5 = 0 và y -1 =0
<=> x + y = 5 và y = 1
<=> x = 4 và y = 1
Vậy max A = 9 <=> x = 4 và y = 1 .

Quách Trần Gia Lạc
Xem chi tiết
Trần Quốc Lộc
14 tháng 4 2018 lúc 10:52

\(A=-x^2-3y^2-2xy+10x+14y-18\\ =-x^2-y^2-2y^2-2xy+10x+10y+4y-25-2+9\\ =-\left(x^2+y^2+25+2xy-10x-10y\right)-\left(2y^2-4y+2\right)+9\\ \\ =-\left(x+y-5\right)^2-2\left(y^2-2y+1\right)+9\\ =-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\)Do \(-\left(x+y-5\right)^2\le0\forall x;y\)

\(-2\left(y-1\right)^2\le0\forall y\)

\(\Rightarrow-\left(x+y-5\right)^2-2\left(y-1\right)^2\le0\forall x;y\)

\(\Rightarrow A=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x\)

Dấu "='' xảy ra khi: \(\left\{{}\begin{matrix}-\left(x+y-5\right)^2=0\\-2\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

Vậy \(A_{\left(Max\right)}=9\) khi \(\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

Yêu lớp 6B nhiều không c...
Xem chi tiết
Vũ Như Quỳnh
25 tháng 3 2019 lúc 12:26

đề nghị bạn trước khi đăng câu hỏi hãy chọn đúng box :)