Tìm MIN của các biểu thức
A= x^4+3x^2+2
B= (x^4+5)2
C= \(\left(x-1\right)^2+\left(y+2\right)^2\)
Tính giá trị của biểu thức
a) \(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|x\right|\right)+y\) với x = 3 và y = -2
b) \(B=\left|2x-1\right|+\left|3y+2\right|\) với x = 3 và y = -3
a, Với x = 3 và y = -2 ta có:
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|3\right|\right)+\left(-2\right)\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-3\right)-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.3-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{3}-2\)
\(A=\dfrac{5}{6}\)
Với x = 3 và y = -3 ta có:
\(B=\left|2.3-1\right|+\left|3.\left(-3\right)+2\right|\)
\(B=\left|5\right|+\left|-7\right|\)
\(B=5+7=12\)
Hoctot ! ko hiểu chỗ nào cứ hỏi cj nhé
rút gọn các phân thức
a,\(\dfrac{7xy^3\left(x-2y\right)}{14x^2y^2\left(x-2y\right)^2}\)
b,\(\dfrac{4a^2-8ab}{2\left(2b-a\right)^3}\)
c,\(\dfrac{3x^3-3x}{x^4-1}\)
d,\(\dfrac{45x\left(3-x\right)}{15x\left(x-3\right)^3}\)
c: \(=\dfrac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}=\dfrac{3x}{x^2+1}\)
1)Giải phương trình: \(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3}{2}x-3.\)
2)Cho các số thực x, y thỏa mãn \(x^2+y^2=1\)Tìm GTNN và GTLN của biểu thức :
\(T=\sqrt{4+5x}+\sqrt{4+5y}.\)
3)Cho các số thực dương a,b,c . Chứng minh rằng
\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}.\)
Đề của trường ^^. mn giúp tui ,nhất là câu 2 tìm min ...
\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}\)
\(\Leftrightarrow\left[2-\frac{b\left(2a-b\right)}{a\left(b+c\right)}\right]+\left[2-\frac{c\left(2b-c\right)}{b\left(c+a\right)}\right]+\left[2-\frac{a\left(2c-a\right)}{c\left(a+b\right)}\right]\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\ge\frac{9}{2}\)
Áp dụng BĐT Schwarz, ta có :
\(\frac{b^2}{a\left(b+c\right)}+\frac{c^2}{b\left(c+a\right)}+\frac{a^2}{c\left(a+b\right)}\ge\frac{\left(a+b+c\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)( 1 )
\(\frac{ac}{a\left(b+c\right)}+\frac{ab}{b\left(c+a\right)}+\frac{bc}{c\left(a+b\right)}=\frac{c^2}{c\left(b+c\right)}+\frac{a^2}{a\left(a+c\right)}+\frac{b^2}{b\left(a+b\right)}\) ( 2 )
\(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ac}\)
Cộng ( 1 ) với ( 2 ), ta được :
\(\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\)
\(\ge\left(a+b+c\right)^2\left(\frac{1}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2+ab+bc+ac}\right)\)
\(\ge\left(a+b+c\right)^2\left(\frac{\left(1+2\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}\right)=\frac{9}{2}\)
không biết cách này ổn không
Ta có : \(\frac{b\left(2a-b\right)}{a\left(b+c\right)}=\frac{2-\frac{b}{a}}{\frac{c}{b}+1}\) ; tương tự :...
đặt \(\frac{a}{c}=x;\frac{b}{a}=y;\frac{c}{b}=z\Rightarrow xyz=1\)
\(\Sigma\frac{2-y}{z+1}\le\frac{3}{2}\)
\(\Leftrightarrow2\Sigma xy^2+2\Sigma x^2+\Sigma xy\ge3\Sigma x+6\)( quy đồng khử mẫu )
\(\Leftrightarrow\Sigma\frac{x}{y}\ge\Sigma x\)( xyz = 1 ) ( luôn đúng )
\(\Rightarrowđpcm\)
1.\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3}{2}x-3\)ĐK \(2x^2-1\ge0\)
<=> \(10x^2-3x-6-2\left(3x+1\right)\sqrt{2x^2-1}=0\)
<=> \(7x^2-4x-8+\left(3x+1\right)\left(x+2-2\sqrt{2x^2-1}\right)=0\)
<=>\(7x^2-4x-8+\left(3x+1\right).\frac{\left(x+2\right)^2-4\left(2x^2-1\right)}{x+2+2\sqrt{2x^2-1}}=0\)
<=> \(7x^2-4x-8+\left(3x+1\right).\frac{-7x^2+4x+8}{x+2+2\sqrt{2x^2-1}}=0\)
<=>\(\orbr{\begin{cases}7x^2-4x-8=0\left(1\right)\\1-\frac{3x+1}{x+2+2\sqrt{2x^2-1}}=0\left(2\right)\end{cases}}\)
Giải (2)
\(2\sqrt{2x^2-1}=2x-1\)
<=> \(\hept{\begin{cases}x\ge\frac{1}{2}\\4x^2+4x-5=0\end{cases}}\)
=> \(x=\frac{-1+\sqrt{6}}{2}\)(thỏa mãn ĐKXĐ)
Giải (1)=> \(x=\frac{2+2\sqrt{15}}{7}\)
Vậy \(S=\left\{\frac{2+2\sqrt{15}}{7},\frac{-1+\sqrt{6}}{2}\right\}\)
Phân tích đa thức thành nhân tử:
1) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
2) \(\left(x+y\right)^4+x^4+y^4\)
3) \(\left(x+y\right)^7+\left(y-2\right)^7+\left(z-x\right)^7\)
4) \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)
5) \(\left(x-y\right)^7+\left(y-z\right)^7+\left(z-x\right)^7\)
6) \(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
7) \(x^3+y^4-6xy+8\)
8) \(x^3+y^3+3x^2+3y^2++6x+6y+8\)
9) \(a^3+ac^2-abc+b^2c+b^3\)
cho x+y+z=1 và x,y,z>0
Tìm min của biểu thức
\(P=\frac{x^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{y^4}{\left(x^2+z^2\right)\left(x+z\right)}+\frac{z^4}{\left(x^2+y^2\right)\left(y+z\right)}\)
phân tích đa thức thành nhân tử
1.\(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
2.\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
3.\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
4.\(a^6-a^4+2a^3+2a^2\)
5.\(\left(a+b\right)^3-\left(a-b\right)^3\)
6.\(x^3-3x^2+3x-1-y^3\)
7.\(x^{m+4}+x^{m+3}-x-1\)
1. (a2+b2+ab)2-a2b2-b2c2-c2a2
=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2
=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2
=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)
=(a2+b2)[(a+b)2-c2]
=(a2+b2)(a+b+c)(a+b-c)
2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2
3. a(b3-c3)+b(c3-a3)+c(a3-b3)
=ab3-ac3+bc3-ba3+ca3-cb3
=a3(c-b)+b3(a-c)+c3(b-a)
=a3(c-b)-b3(c-a)+c3(b-a)
=a3(c-b)-b3(c-b+b-a)+c3(b-a)
=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)
=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)
=(a-b)(c-b)(a2+ab+2b2+bc+c2)
4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)
5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]
=2b(3a2+b2)
6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]
=(x-y-1)(x2+y2+xy-2x-y+1)
7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)
(Đúng nhớ like nhá !)
Rút gọn biểu thức
a. Q= \(\left(x-y\right)^2\)-4(x-y)(x+2y)+4\(\left(x+2y\right)^2\)
b. A=\(\left(xy+2\right)^3\)-6\(\left(xy+2\right)^2\)+12(xy+2)-8
c. \(\left(x+2\right)^3\)+\(\left(x-2\right)^3\)-2x(\(x^2\)+12)
a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)
\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)
\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)
\(Q=\left(x-y-2x-4y\right)^2\)
\(Q=\left(-x-5y\right)^2\)
b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)
\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)
\(A=\left[\left(xy+2\right)-2\right]^3\)
\(A=\left(xy+2-2\right)^3\)
\(A=\left(xy\right)^3\)
\(A=x^3y^3\)
c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)
\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)
\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)
\(=0\)
a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2
=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2
b: =(xy+2-2)^3=(xy)^3=x^3y^3
c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)
=24x+2x^3-2x^3-24x
=0
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cứu tui với :<
1.
\(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\)
\(\Leftrightarrow\dfrac{a+b+c+2a+c}{2a+c}=\dfrac{a+b+c+2b}{2b}=\dfrac{a+b+c+b+c}{b+c}\)
\(\Leftrightarrow\dfrac{a+b+c}{2a+c}+1=\dfrac{a+b+c}{2b}+1=\dfrac{a+b+c}{b+c}+1\)
\(\Leftrightarrow\dfrac{a+b+c}{2a+c}=\dfrac{a+b+c}{2b}=\dfrac{a+b+c}{b+c}\)
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
TH2: \(a+b+c\ne0\)
\(\Rightarrow\dfrac{1}{2a+c}=\dfrac{1}{2b}=\dfrac{1}{b+c}\)
\(\Rightarrow\left\{{}\begin{matrix}2a+c=b+c\\2b=b+c\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a=b\\b=c\end{matrix}\right.\) \(\Rightarrow2a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+2a\right)\left(2a+2a\right)\left(2a+a\right)}{a.2a.2a}=9\)
Bài 2 đề sai
Ở phân thức thứ 2 không thể là \(\dfrac{y+3x-x}{x}\)
Bài 2:
\(P=\dfrac{x+3y}{y}\cdot\dfrac{y+3z}{z}\cdot\dfrac{z+3x}{x}=\dfrac{\left(x+3y\right)\left(y+3z\right)\left(z+3x\right)}{xyz}\)
Với \(x+y+z=0\)
\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}\\ \Leftrightarrow\dfrac{x+3y+x+y}{z}=\dfrac{y+3z+y+z}{x}=\dfrac{z+3x+x+z}{y}\\ \Leftrightarrow\dfrac{2\left(x+2y\right)}{z}=\dfrac{2\left(y+2z\right)}{x}=\dfrac{2\left(z+2x\right)}{y}\\ \Leftrightarrow\dfrac{2\left(y-z\right)}{z}=\dfrac{2\left(z-x\right)}{x}=\dfrac{2\left(x-y\right)}{y}\\ \Leftrightarrow\dfrac{2y-2z}{z}=\dfrac{2z-2x}{x}=\dfrac{2x-2y}{y}\\ \Leftrightarrow\dfrac{2y}{z}-2=\dfrac{2z}{x}-2=\dfrac{2x}{y}-2\\ \Leftrightarrow\dfrac{2y}{z}=\dfrac{2z}{x}=\dfrac{2x}{y}\\ \Leftrightarrow\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x}{y}\Leftrightarrow x=y=z=0\left(\text{trái với GT}\right)\)
Với \(x+y+z\ne0\)
\(\Leftrightarrow\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y-z=3z\\y+3z-x=3x\\z+3x-y=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=4z\\y+3z=4x\\z+3x=4y\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{4x\cdot4y\cdot4z}{xyz}=64\)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)