Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hào 7A4
Xem chi tiết
Bùi Đức Huy Hoàng
4 tháng 4 2022 lúc 15:54

vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)

mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)

=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

Hà Trí Kiên
Xem chi tiết

(\(x-3\))+ (2y - 1)2 = 0

          (\(x\) - 3)2 ≥ 0 ∀ \(x\)

        (2y - 1)2 ≥ 0 ∀ y

⇔ (\(x\) - 3)2 + (2y - 1)2= 0

⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)

(4\(x-3\))4 + (y + 2)2 ≤ 0

(4\(x\) - 3)4 ≥ 0 ∀ \(x\)

(y + 2)2 ≥ 0 ∀ y

⇔(4\(x\) - 3)4   + (y+2)2 ≥ 0

⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔

\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)

 

 

 

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 21:12

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

Akai Haruma
5 tháng 10 2021 lúc 21:30

1a. Đề lỗi

1b. 

PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$

$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$

$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$

Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$

$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)

Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)

Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$

$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$

Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$

$\Rightarrow (x,y)=(3, 1), (-7, 1)$

Akai Haruma
5 tháng 10 2021 lúc 21:33

1c. 

Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$

$3(y-1)^2\equiv 0\pmod 3$

$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$

Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm

1d.

Ta thấy:

$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$

$18(y-2)^{2019}\equiv 0\pmod 3$

$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.

Quỳnh Như
Xem chi tiết
Xấu Không Cần Hư Cấu
Xem chi tiết
Trịnh Hữu An
18 tháng 7 2017 lúc 21:09

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

duygatay
18 tháng 7 2017 lúc 15:37

mk chịu

Trịnh Hữu An
18 tháng 7 2017 lúc 20:58

1, Khai triển ra ta được:

\(r\left(x\right)=-\left(9x^2-42x+49\right)+6x-14-17\)

\(=-9x^2+42x-49+6x-14-17\)

\(=-9x^2+48x-80\)

\(=-9x^2+48x-64-16\)

\(=-\left(\left(3x\right)^2-3x.2.8+8^2\right)-16\)

\(=-\left(3x+8\right)^2-16\)

\(Do-\left(3x+8\right)^2\le0\)

\(=>-\left(3x+8\right)^2-16\le-16\)

Dấu bằng xảy ra khi \(3x+8=0=>x=-\frac{8}{3}\)

Vậy giá trị nhỏ nhất là -16 tại \(x=-\frac{8}{3}\)

vu thi kim oanh
Xem chi tiết
Phạm Hồ Thanh Quang
4 tháng 7 2018 lúc 21:07

a) \(\left(x+3\right)^2-\left(2x+1\right).\left(2x-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-\left(4x^2-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-4x^2+1=22\)
\(\Leftrightarrow-3x^2+6x-12=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\)(vô lý)

b)   \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25-46=0\)
\(\Leftrightarrow40x-80=0\)
\(\Leftrightarrow x=2\)

ILoveMath
Xem chi tiết
nguyenthitulinh
Xem chi tiết
hoanghuongly
Xem chi tiết
Trần Việt Linh
2 tháng 8 2016 lúc 13:27

\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(-\frac{1}{x}+\frac{1}{x-4}=\frac{1}{x-4}\)

\(\Leftrightarrow\)\(\frac{-\left(x-4\right)+x}{x\left(x-4\right)}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(4-x+x=x\)

\(\Leftrightarrow x=4\)

Nguyễn Thị Mai Huyền (B...
12 tháng 8 2016 lúc 15:02

lo nói mk làm cách lâu chứ m cx hỏi người khác!!!!!!!!!!!