tìm m để đường thẳng y = 2x - 1 và đường thẳng y = 3x + m cắt nhau tại 1 điểm nằm trên trục hoành
Tìm m để đường thẳng y = 2x - 1 và đường thẳng y = 3x + m cắt nhau tại một điểm nằm trên trục hoành
Tìm m để đường thẳng y=-3x+6 và đường thẳng y= 5/2 .x -2m+1 cắt nhau tại 1 điểm nằm trên trục hoành
tìm m để 2 đường thẳng y=2x-1 và y=3x+m cắt nhau tại 1 điểm trên trục hoành
Gọi giao điểm của (d1) y = 2x - 1 và (d2) y = 3x + m trên trục hoành là A(xA ; 0)
Vì A(xA ; 0) thuộc (d1) nên 0 = 2xA - 1 => xA = 1/2
Vì A(xA ; 0) thuộc (d2) nên 0 = 3xA + m
<=> 0 = 3 . 1/2 + m
<=> m = -3/2
cho đườn thẳng y=-3x+2 và đường thẳng y=\(\dfrac{3}{2}\)x+2m+1. Tìm m để hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành
+) Tìm giao điểm của đường thẳng \(y=-3x+2\) và trục hoành:
Phương trình hoành độ giao điểm: \(-3x+2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy đường thẳng \(y=-3x+2\) cắt trục hoành tại điểm \(A\left(\dfrac{2}{3};0\right)\)
+) Yêu cầu bài toán \(\Rightarrow A\left(\dfrac{2}{3};0\right)\in\left(d\right):y=\dfrac{3}{2}x+2m+1\)
Thay \(x=\dfrac{2}{3};y=0\) ta có: \(\dfrac{3}{2}.\dfrac{2}{3}+2m+1=0\Rightarrow2m+2=0\)
\(\Rightarrow2m=-2\Rightarrow m=-1\).
tìm m để đường thẳng y=-3x+6 và y=5/2x-2m+1 cắt nhau tại một điểm trên trục hoành
Lời giải:
PT hoành độ giao điểm:
$-3x+6-(2,5x-2m+1)=0$
$\Leftrightarrow -5,5x+5+2m=0$
$\Leftrightarrow x=\frac{5+2m}{5,5}$
Tung độ giao điểm:
$y=-3x+6=\frac{-3(5+2m)}{5,5}+6$
Để 2 đths trên cắt nhau tại 1 điểm trên trục hoành thì $y=\frac{-3(5+2m)}{5,5}+6=0$
$\Leftrightarrow m=3$
Tìm m để đường thẳng y=3x-6 và đường thẳng y=3/2x+m cắt nhau tại một điểm trên trục hoành.
Tìm m để đường thẳng y = (2m + 3)x + m - 1 và đường thẳng y = 2x + 3 cắt nhau tại 1 điểm trên trục hoành
Thay y=0 vào y=2x+3, ta được:
2x+3=0
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) và y=0 vào y=(2m+3)x+m-1, ta được:
\(-\dfrac{3}{2}\left(2m+3\right)+m-1=0\)
\(\Leftrightarrow-3m-\dfrac{9}{2}+m-1=0\)
\(\Leftrightarrow-2m=\dfrac{11}{2}\)
hay \(m=-\dfrac{11}{4}\)
Tìm m để hai đường thẳng (d1): y = x - 2m + 1 và (d2): y = 2x – 3 cắt nhau tại một điểm nằm phía trên trục hoành
Phương trình hoành độ giao điểm là:
x-2m+1=2x-3
=>-x=-3+2m-1
=>-x=2m-4
=>x=-2m+4
Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0
=>2x-3>0
=>x>3/2
a.biết đường thẳng y=ax+b đi qua điểm M(\(2;\dfrac{1}{2}\)) và song song với đường thẳng 2x+y=3. tìm các hệ số a và b
b.tìm m để đường thẳng y=2x-1 và đường thẳng y=3x+m cắt nhau tại một điểm nằm trên trục hoành
c.tìm m để đường thẳng y=-3x+6 và đường thẳng y=\(\dfrac{5}{2}\)x-2m+1 cắt nhau tại 1 điểm trên trục tung
2x+y=3
=>y=-2x+3
hàm số y=ax+b song song với y=-2x+3
=> hàm số có dạng y=-2x+b
Hàm số đi qua M(2;1/2)
=>\(\dfrac{1}{2}.2-2\)
=>b=-7/2
Vậy \(a=-2;b=\dfrac{7}{2}\)
Tìm m để các đường thẳng y=2x+m và y=x-2m+3 cắt nhau tại một điểm nằm trên trục tung
(Điểm nằm trên trục tung có hoành độ bằng 0)
\(PTHDGD:2x+m=x-2m+3\)
Mà 2 đt cắt tại 1 điểm trên trục tung nên \(x=0\)
\(\Leftrightarrow m=3-2m\\ \Leftrightarrow m=1\)