Cho a,b,c >0. Chứng minh: \(\frac{a^8 +b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a, b, c > 0. chứng minh:
\(A=\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh BĐT phụ:\(x^2+y^2+z^2\ge xy+yz+zx\)
Thật vậy: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (Đúng)
Áp dụng BĐT trên, ta có:
\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow A=\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\) \(\left(1\right)\)
Lại áp dụng BĐT ban đầu, ta có:
\(\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{bc}{abc}+\frac{ca}{abc}+\frac{ab}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(A\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi a=b=c > 0
Vậy \(A=\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) với \(a;b;c>0\)
\(\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Leftrightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}\)
\(\Leftrightarrow\frac{a^8+b^8+c^8}{a^2b^2c^2}\ge ab+bc+ca\Leftrightarrow\Sigma\frac{a^6}{b^2c^2}\ge ab+bc+ca\)
Do \(a^2+b^2+c^2\ge ab+bc+ca\)nên ta cần chứng minh \(\Sigma\frac{a^6}{b^2c^2}\ge a^2+b^2+c^2\)(*)
Đặt \(\left(a^2,b^2,c^2\right)\rightarrow\left(x,y,z\right)\). Khi đó (*) trở thành \(\frac{x^3}{yz}+\frac{y^3}{zx}+\frac{z^3}{xy}\ge x+y+z\)
Theo BĐT Bunyakovsky dạng phân thức, ta có:
\(\frac{x^3}{yz}+\frac{y^3}{zx}+\frac{z^3}{xy}=\frac{x^4}{xyz}+\frac{y^4}{xyz}+\frac{z^4}{xyz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3xyz}\)
\(\ge\frac{\left(\frac{\left(x+y+z\right)^2}{3}\right)^2}{\frac{\left(x+y+z\right)^3}{9}}=x+y+z\left(Q.E.D\right)\)
Đẳng thức xảy ra khi x = y = z hay a = b = c
chứng minh:
a) \(x+y+\frac{2}{x}+\frac{2}{y}\ge6\)\(\left(x+y\le2;x,y>0\right)\)
b) \(\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
a) Ta có : \(x+y+\frac{2}{x}+\frac{2}{y}=\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\)
Áp dụng bất đẳng thức Cauchy, ta có : \(2x+\frac{2}{x}\ge2\sqrt{2x.\frac{2}{x}}=4\) (1)
Tương tự : \(2y+\frac{2}{y}\ge2\sqrt{2y.\frac{2}{y}}=4\)(2) ; \(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)(3)
Cộng (1) , (2) , (3) theo vế được: \(\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\ge4+4-2=6\)
Hay \(x+y+\frac{2}{x}+\frac{2}{y}\ge6\) (đpcm)
b) Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\) được :
\(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\)
Tương tự : \(\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)
\(\Rightarrow a^4+b^4+c^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ac}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c>0. chứng minh: \(\frac{a^8+b^8+c^8}{a^3+b^3+c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hình như dấu + dưới mẫu là nhân mới đúng
cho a , b, ,c là các số thực thỏa a+b+c = 0 chứng minh
\(\frac{a-1}{a^2+8}+\frac{b-1}{b^2+8}+\frac{c-1}{c^2+8}\ge-\frac{3}{8}\)
Cho a,b,c thuộc (0;1]. Chứng minh rằng:
\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{3}{3+abc}\)
Áp dụng BĐT C-S dạng ENgel ta có:
$$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} \ge \frac{3}{3+abc} $$
$$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} \ge \frac{9}{4(a+b+c)} $$
Ta chứng minh $$ \frac{9}{4(a+b+c)} \ge \frac{3}{3+abc} $ hay $9+3abc \ge 4(a+b+c) $$
Đặt $ a= 1-x, b=1-y, c=1-z $ rồi xài AM-GM
đặt xong rồi khai triển rồi AM-GM phải không ạ?
Cho 3 số dương a,b,c thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=16\)
Chứng minh rằng:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{8}{3}\)
#giúp mình nhé! Cảm ơn *cúi*
\(\frac{1}{3a+2b+c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\) )cái này bn tự cm nha bằng hệ quả của bunhia
tương tự :\(\frac{1}{3b+2c+a}\le\frac{1}{36}\left(\frac{3}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
\(\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{3}{c}+\frac{2}{a}+\frac{1}{b}\right)\)
Công tất cả các vế vs nhau:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)=1/36 x96=8/3
à còn phần mik dùng bunhia sao ra dc thế nè :\(\frac{1}{3a+2b+c}=\frac{1}{a+a+a+b+b+c}\)
\(=\frac{1}{36}\left(\frac{36}{a+a+a+b+b+c}\right)\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
cho các số a,b,c > 0. chứng minh:
1.\(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{a+b+c}{3}\)
2.\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{a+b+c}{5}\)
Áp dụng bđt Cauchy-schwarz dạng engel ta có:
1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)
Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)
2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)
Dấu "=" \(\Leftrightarrow a=b=c\)
Cho a, b, c dương. Chứng minh: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Lời giải:
BĐT cần chứng minh tương đương với:
\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)
Áp dụng BĐT AM-GM:
\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)
\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)
Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:
\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)
Áp dụng BĐT Cauchy_Schwarz và AM-GM:
\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)
\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)
Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.
Dấu "=" xảy ra khi $a=b=c$
1. Cho \(a,b>0\). Chứng minh \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
2. Cho \(a,b,c\in\left[0;1\right].\)Chứng minh \(a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\le1\)
3. Cho \(a,b,c>0\). Chứng minh \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
4. Cho \(a,b,c>0\)thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\). Chứng minh \(abc\le\frac{1}{8}\)
5. Cho \(x,y\ge0\)thỏa mãn \(x^3+y^3=2\). Chứng minh \(x^2+y^2\le2\)
6. Cho \(a,b,c\ne0\). Chứng minh \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\le\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\)
7. Cho \(a,b,c\)là độ dài ba cạnh của tam giác. Chứng minh \(a^2b+b^2c+c^2a+a^2c+b^2a-a^3-b^3-c^3-2abc>0\)
8. Cho \(a,b,c>0\). Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Bài 3
\(VT=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}a^2+ab+b^2\ge3ab\\b^2+bc+c^2\ge3bc\\c^2+ca+a^2\ge3ca\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ab\left(a+b\right)}{a^2+ab+b^2}\le\frac{a+b}{3}\\\frac{bc\left(b+c\right)}{b^2+bc+c^2}\le\frac{b+c}{3}\\\frac{ca\left(c+a\right)}{c^2+ca+a^2}\le\frac{c+a}{3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{a+b}{3}\\b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\\c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\ge c-\frac{c+a}{3}\end{cases}}\)
\(\Rightarrow VT\ge a+b+c-\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow VT\ge\frac{a+b+c}{3}\)
\(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)( đpcm )