Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Triều Nguyễn Quốc
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
Võ Nguyễn Hương Giang
22 tháng 7 2018 lúc 21:44

Q=\(\dfrac{1}{2}+\left(\dfrac{3}{4}+\dfrac{7}{8}\right)+\left(\dfrac{15}{16}+\dfrac{31}{32}\right)+\left(\dfrac{63}{64}+\dfrac{127}{128}\right)-6\)

Q=\(\dfrac{1}{2}+\dfrac{13}{8}+\dfrac{61}{32}+\dfrac{253}{128}\)\(-6\)

Q= \(\dfrac{64}{128}+\dfrac{208}{128}+\dfrac{244}{128}+\dfrac{253}{128}-6\)

Q= \(\dfrac{769}{128}-6\)

Q=\(\dfrac{769}{128}-\dfrac{768}{128}\)

Q= \(\dfrac{1}{128}\)

Rochelle
Xem chi tiết
Nguyễn Huy Tú
11 tháng 4 2017 lúc 21:58

\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=0\)

Vậy...

Khánh Linh
Xem chi tiết
Edogawa Conan
25 tháng 3 2017 lúc 19:05

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}.\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}\right)}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

Thao Nguyen
Xem chi tiết
Nguyen
1 tháng 1 2019 lúc 15:40

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{63}+\sqrt{64}}\)

\(A=\dfrac{\sqrt{1}-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+...+\dfrac{\sqrt{63}-\sqrt{64}}{-1}\)

\(A=-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{63}-\sqrt{64}\right)\)

\(A=-\sqrt{1}+\sqrt{64}\)

tran nguyen bao quan
1 tháng 1 2019 lúc 15:47

Ta có công thức tổng quát:

\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

Vậy \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{63}+\sqrt{64}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{64}-\sqrt{63}=-1+\sqrt{64}=8-1=7\)

Quỳnh Như
Xem chi tiết
Luân Đào
26 tháng 7 2018 lúc 10:53

\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{264}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)

Cô bé áo xanh
Xem chi tiết
Luân Đào
1 tháng 1 2018 lúc 18:10

Sửa đề

\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}\right)}{\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{64}-\dfrac{1}{256}}+\dfrac{5}{8}\)

\(=\dfrac{1}{2}\cdot3+\dfrac{5}{8}=\dfrac{3}{2}+\dfrac{5}{8}=\dfrac{17}{8}\)

Ái Nữ
1 tháng 1 2018 lúc 18:11

A= \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{\dfrac{4}{4}-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13})}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{4^3}-\dfrac{1}{16^2})}{4.(\dfrac{1}{4})-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{4^2}-\dfrac{1}{16^2})}{4-\dfrac{1}{4^3}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(-\dfrac{1}{16^2})}{4.-\dfrac{1}{4^2}}+\dfrac{5}{8}\)

Ái Nữ
1 tháng 1 2018 lúc 18:14

A= \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}.\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{256})}{4.\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{4^4})}{4.\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

=> \(\dfrac{1}{2}.\dfrac{3.\dfrac{1}{4^3}}{4.}+\dfrac{5}{8}\)

Cách này cũng được và gọn hơn

Nam Lee
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 19:54

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{4}=\dfrac{3}{8}\)