Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mỹ vân
Xem chi tiết
Trên con đường thành côn...
27 tháng 8 2021 lúc 21:55

undefined

Ngô Thành Chung
27 tháng 8 2021 lúc 22:00

Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 16:52

a.

Bình phương 2 vế, BĐT cần chứng minh trở thành:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)

Ta có:

\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cộng lại:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

b.

\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)

Nên ta chỉ cần chứng minh:

\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)

\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)

Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)

Roronoa Zoro
Xem chi tiết
Nguyễn Ngọc Khánh
7 tháng 3 2020 lúc 17:42

Đặt 

x=a+b , y=b+c , z=c+a

=> x+y+z=2

Ta cần chứng minh x+z > 4xyz

Ta có 

4(x+z)=(x+y+z)2

(x+z) > 4y.4xz=16xyz

= 4y(x+z)2 > 4y.4xz= 16xyz

=>x+z > 4xyz

Hoàn tất chứng minh . Dấu "=" xảy ra khi x=z=1/2:y=1 thế vào tìm a,b,c.

Chúc bn hok tốt

Khách vãng lai đã xóa
Rhider
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Hồng Phúc
27 tháng 8 2021 lúc 23:44

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

VUX NA
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 8 2021 lúc 13:37

Xét \(VT=a+2b+c=1+b\left(1\right)\)

Áp dụng BĐT AG-GM:

\(4\left(1-a\right)\left(1-c\right)\le\left(1-a+1-c\right)^2=\left(2-a-c\right)^2=\left(1+a+b+c-a-c\right)^2=\left(1+b\right)^2\left(2\right)\)

\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(1+b\right)^2\)

Mà \(\left(1-b\right)\left(1+b\right)^2-\left(1-b\right)=\left(1+b\right)\left(1-b^2-1\right)=-b^2\left(1+b\right)\le0,\forall b\ge0\)

Do đó \(\left(1-b\right)\left(1+b\right)^2\le1+b\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta có ĐPCM

Dấu "=" \(\Leftrightarrow a=c=\dfrac{1}{2};b=0\) 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2019 lúc 11:11

Vì a, b, c không âm và có tổng bằng 1 nên  0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g   t ự :   5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7   ( đ p c m )

Nguoi Ngu
Xem chi tiết
tth_new
13 tháng 10 2018 lúc 20:30

Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a+ab^2}{1+b^2}-\frac{ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);  \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT trên,ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\)

Do \(ab+bc+ca\ge\frac{\left(a+b+c\right)^2}{3}\) (dấu "=" xảy ra khi a = b = c) nên ta có:)

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}^{\left(đpcm\right)}\)

nguyễn công huy
Xem chi tiết