Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đoàn minh phong
Xem chi tiết
Vanvi Hoang
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 15:52

\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2^2+2^3\right)+...+2^{118}\left(1+2^2+2^3\right)\\ A=\left(1+2^2+2^3\right)\left(2+...+2^{118}\right)\\ A=7\left(2+...+2^{118}\right)⋮7\)

Lấp La Lấp Lánh
5 tháng 11 2021 lúc 15:52

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7=7\left(2+2^4+...+2^{118}\right)⋮7\)

Rosie
Xem chi tiết
Hà Vy
5 tháng 10 2021 lúc 18:28

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

Khách vãng lai đã xóa
Yen Nhi Nguyen Hai
4 tháng 11 2021 lúc 18:41

dcv

phương thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 20:23

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

Nguyễn Linh Chi
Xem chi tiết
OH-YEAH^^
21 tháng 8 2021 lúc 8:23

b) A=2+22+23+...+220

A=(2+22)+(23+24)+...+(219+220)

A=3.2+3.23+...+3.219

A=3.(2+23+25+...+219)

⇒A⋮3

phần c) làm tương tự

Funky
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2021 lúc 12:47

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

phạm thành đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2021 lúc 12:44

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)

pham quynh chibb
Xem chi tiết
Xyz OLM
18 tháng 11 2019 lúc 20:45

A = 2 + 22 + 23 + 24 + 25..... + 223 + 224

=  (2 + 22 + 23) + (23 + 24 + 25) + ..... + (222 + 223 + 224)

=  (2 + 22 + 23) + 22 (2 + 2+ 23) + .... + 222. (2 + 22 + 23)

= 14 + 22.14 + .... + 222.14

= 14.(1 + 22 + ... + 222)

= 2.7.(1 + 22 + ... + 222\(⋮\) 7

\(\Rightarrow A⋮7\)(ĐPCM)

Khách vãng lai đã xóa
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 22:37

a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)

b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)

༺ミ𝒮σɱєσиє...彡༻
21 tháng 8 2021 lúc 22:39

c) tham khảo:

M = 2 + 22 + 23 + ... + 220
= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
= 2 . ( 1 + 2 + 22 + 23 ) + 25 . ( 1 + 2 + 22 + 23 ) + ... + 217 . ( 1 + 2 + 22 + 23 )
= 2 . 15 + 25 . 15 + ... + 217 .15
= 15 . 2 ( 1 + 24 + ... + 216 )
= 3 . 5 . 2 ( 1 + 24 + ... + 216 ) \(⋮\) 5

Akai Haruma
21 tháng 8 2021 lúc 22:39

Lời giải:
a. 

$A=2(1+2^1+2^2+...+2^{19})\vdots 2$

b. 

$A=(2+2^2)+(2^3+2^4)+.....+(2^{19}+2^{20})$

$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$

$=2.3+2^3.3+...+2^{19}.3$

$=3(2+2^3+...+2^{19})\vdots 3$

c.

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$

$=2.15+2^5.15+....2^{17}.15$
$=15(2+2^5+...+2^{17})$
$=5.3.(2+2^5+...+2^{17})\vdots 5$

Nguyễn Đức Dương
Xem chi tiết
Nguyễn Minh Quang
9 tháng 11 2021 lúc 10:01

ta có :

undefined

undefined

A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5

Khách vãng lai đã xóa