Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Không Tên
Xem chi tiết
Pain Thiên Đạo
18 tháng 1 2018 lúc 21:37

làm ny tớ nhé :)

Pain Thiên Đạo
18 tháng 1 2018 lúc 22:04

\(3x^2+y^2+2x-2y=1\Leftrightarrow3x^2+y^2+2\left(x-y\right)=1\)

\(3x^2+y^2+2\left(x-y\right)+2xy-2xy\)   thêm 2xy - 2xy

\(2x^2+x^2+y^2+2xy-2xy+2\left(x-y\right)=1\)

\(2x\left(x+y\right)+\left(x^2-2xy+y^2\right)+2\left(x-y\right)=1\)

\(2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)=1\)

\(2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)=2-1\Leftrightarrow2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)+1=2\)

\(2x\left(x+y\right)+\left(x-y+1\right)^2=2\)

\(2x\left(x+y\right)=2-\left(x-y+1\right)^2\le2\)  vì ( x-y+1)^2 >= 0 với mọi xy

rồi đến đây mik éo làm được nữa :))

Thơ Nụ =))
Xem chi tiết

1: \(MTC=2\left(x-y\right)\left(x+y\right)\)

\(\dfrac{x-y}{2x^2-4xy+2y^2}=\dfrac{x-y}{2\left(x-y\right)^2}=\dfrac{1}{2\left(x-y\right)}=\dfrac{1\cdot\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{2\left(x-y\right)\left(x+y\right)}\)

\(\dfrac{x+y}{2x^2+4xy+2y^2}\)

\(=\dfrac{x+y}{2\left(x^2+2xy+y^2\right)}\)

\(=\dfrac{x+y}{2\left(x+y\right)^2}=\dfrac{1}{2\left(x+y\right)}=\dfrac{x-y}{2\left(x+y\right)\left(x-y\right)}\)

\(\dfrac{1}{x^2-y^2}=\dfrac{2}{2\left(x^2-y^2\right)}=\dfrac{2}{2\left(x-y\right)\left(x+y\right)}\)

2: \(\dfrac{1}{x^2+8x+15}=\dfrac{1}{\left(x+3\right)\left(x+5\right)}=\dfrac{x+3}{\left(x+3\right)^2\cdot\left(x+5\right)}\)

\(\dfrac{1}{x^2+6x+9}=\dfrac{1}{\left(x+3\right)^2}=\dfrac{x+5}{\left(x+3\right)^2\cdot\left(x+5\right)}\)

3: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}=\dfrac{1\cdot\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{a-c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\dfrac{1}{\left(c-b\right)\left(c-a\right)}=\dfrac{1}{\left(b-c\right)\left(a-c\right)}=\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\dfrac{1}{\left(b-a\right)\left(a-c\right)}=\dfrac{-1}{\left(a-b\right)\left(a-c\right)}=\dfrac{-\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

ILoveMath
Xem chi tiết
luong quang thanh
Xem chi tiết
Nguyễn Linh Chi
11 tháng 11 2018 lúc 10:50

\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y

\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)

\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực

Vì P nguyên dương => P=1 

Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)

vì x khác y

Cầm Dương
Xem chi tiết
ngonhuminh
24 tháng 1 2017 lúc 17:20

(a) làm được rồi port lên luôn vì (b) cần cái KQ của (a)

Cầm Dương
24 tháng 1 2017 lúc 17:30

Rút gọn ra \(A=y+x\) nhé

ngonhuminh
24 tháng 1 2017 lúc 18:36

có vẻ A không gọn thế 

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Nguyễn Trần An Thanh
Xem chi tiết
ngonhuminh
25 tháng 4 2017 lúc 14:57

rút gọn A

\(A=\dfrac{4xy}{y^2-y^2}:\left(\dfrac{x+y+\left(y-x\right)}{\left(y-x\right)\left(x+y\right)^2}\right)=\dfrac{4xy\left[\left(y-x\right)\left(x+y\right)^2\right]}{2y\left(y-x\right)\left(x+y\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne\left|y\right|\\A=2x\left(x+y\right)=2x^2+2xy\end{matrix}\right.\)

\(B=3x^2+y^2+2x-2y\)

\(B-A+1=x^2+y^2+2x-2y-2xy+1=\left(x+1-y\right)^2\)

\(\Rightarrow A\le1\Rightarrow A=1\)\(\Rightarrow x+1-y=0\) thay lại ra được x,y

Cathy Trang
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 18:25

Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)

\(\Leftrightarrow x^2+2\le3x\)

Hoàn toàn tương tự ta có \(y^2+2\le3y\)

Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)

\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)

Đặt \(a=x+y-1\Rightarrow1\le a\le3\)

\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)

\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)

\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)

\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

Phan Tuấn Dũng
Xem chi tiết
Nguyễn Xuân Tùng
2 tháng 12 2017 lúc 19:43

ib tui làm cho