1) Trong mat phang toa do Oxy , cho elip (E) : \(\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\) va vecto v = (2;1). Anh cua (E)qua phep tinh tien T la:
1) Trong mat phang toa oxy, cho tam giac ABC co A(1;2); B(-1;1); C(5;-1). Tinh Cos A
A. \(\dfrac{-1}{\sqrt{5}}\) B.\(\dfrac{1}{\sqrt{5}}\) C. \(\dfrac{-2}{\sqrt{5}}\) D. \(\dfrac{2}{\sqrt{5}}\)
Trong khong gian voi he truc toa do oxyz, cho duong thang d:x/1=y+1/2=z+2/3 va mat phang (p): x+2y-2z+3=0. Viet phuong trinh mat phang (a) di qua goc toa do va vuong goc voi d. Tim toa do M thuoc duong thang d sao cho khoang cach tu M den mat phang (p) = 2
mf (a) đi wa O(0;0;0) có VTPT :na=ud =(1,2,3) →pt :x+2y+3z=0
M ϵ d → M( t; -1+2t; -2+3t) d(M; (p))=2= \(\frac{5-t}{\sqrt{5}}\) tìm đk : t=5+2\(\sqrt{5}\) và t=5-2\(\sqrt{5}\) →tìm đk 2 tọa độ M
trong mat phang he truc toa do Oxy,cho hinh vuong ABCDC(2;-2) co K,I lan luot la trung diem cua DA va DC.Diem M(-1;-1) la giao diem cua AK va BI.Tim toa do cac dinh con lai
Bạn coi lại đề, đề bài này không đúng (chắc chắn bạn ghi nhầm 1 dữ kiện nào đó)
I là trung điểm CD \(\Rightarrow ID=\frac{1}{2}CD=\frac{1}{2}AB\)
Mà ID song song AB \(\Rightarrow ID\) là đtb tam giác ABM
\(\Rightarrow\)D là trung điểm AM \(\Rightarrow DM=AD=CD\Rightarrow\Delta CDM\) vuông cân tại D
\(\overrightarrow{MC}=\left(3;-1\right)\Rightarrow CM=\sqrt{10}\) \(\Rightarrow CD=\frac{CM}{\sqrt{2}}=\sqrt{5}\)
Gọi \(D\left(a;b\right)\Rightarrow\left\{{}\begin{matrix}CD\perp DM\\CD=\sqrt{5}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\overrightarrow{CD}=\left(a-2;b+2\right)\\\overrightarrow{MD}=\left(a+1;b+1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(a+1\right)+\left(b+2\right)\left(b+1\right)=0\\\left(a-2\right)^2+\left(b+2\right)^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a+b^2+3b=0\\a^2-4a+b^2+4b+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a+b^2+3b=0\\3a-b-3=0\Rightarrow b=3a-3\end{matrix}\right.\)
\(\Rightarrow a^2-a+\left(3a-3\right)^2+3\left(3a-3\right)=0\)
\(\Leftrightarrow10a^2-10a=0\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=1\end{matrix}\right.\) \(\Rightarrow D\left(1;0\right)\)
D là trung điểm AM \(\Rightarrow\left\{{}\begin{matrix}x_A=2x_D-x_M=3\\y_A=2y_D-y_M=1\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow B\left(4;-1\right)\)
Ủa làm xong mới để ý B có hoành độ dương chứ ko phải D :))))
Vậy ko loại ngay \(a=0\) mà vẫn phải tính (nhưng đằng nào cũng loại)
trong mat phang toa do Oxy
ve do thi (P) cua ham so y=1/4 x^2
bạn lập bảng giá trị của x và y rồi vẽ parabol
Trong mặt phẳng với hệ trục tọa độ Oxy cho elip (E) có phương trình chính tắc \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Độ dài trục lớn của elip (E) là:
A. 10 B. 25 C. 9 D. 6
Từ phương trình \(\Rightarrow a^2=25\Rightarrow a=5\)
Độ dài trục lớn: \(2a=10\)
Trong mat phang toa do Oxy , cho ham so y=mx+2 (1) (m#2)
a, Ve do thi ham so khi m=2
b, Tim m de do thi ham so (1) cat truc Ox va truc Oy lan luot tai A va B sao cho tam giac AOB can
a) Với m=2 thì hàm số đã cho trở thành: \(y=2x+2\)
-Nếu \(x=0\Rightarrow y=2\) . Ta có điểm \(\left(0;2\right)\in Oy\)
- Nếu \(y=0\Rightarrow x=-1\). Ta có điểm \(\left(-1;0\right)\in Ox\)
Đường thẳng đi qua 2 điểm \(\left(0;2\right);\left(-1;0\right)\) là đồ thị của hàm số \(y=2x+2\)
b) Vì: \(\left(1\right)\cap Ox=\left\{A\right\}\) . Nên:
\(mx+2=0\Leftrightarrow x=\frac{-2}{m}\)
=> \(OA=\left|-\frac{2}{m}\right|\)
Vì: \(\left(1\right)\cap Oy=\left\{B\right\}\). Nên: \(y=2\)
=> \(OB=2\)
Vì: (1) cắt các trục tọa độ 1 tam giác cân nên:
\(OA=OB\)
\(\Leftrightarrow\left|-\frac{2}{m}\right|=2\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-\frac{2}{m}=2\\-\frac{2}{m}=-2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}m=-1\\m=1\end{array}\right.\)
trong mat phang toa do oxy p y=-1/2x^2 gọi a (x1;y1) va b (x2;y2) là giao điểm của p và d y=x-4 chung minh y1 + y2 -5(x1 + x2) = 0
Ta có phương trình hoành độ giao điểm là
\(\dfrac{-1}{2}x^2=x-4\)
⇒\(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Ta có : a(2;y1); b(-4;y2). Do hai điểm a và b cùng thuộc đường thẳng d nên ta có:
\(\left\{{}\begin{matrix}y_1=x_1-4=2-4=-2\\y_2=x_2-4=-4-4=-8\end{matrix}\right.\)
Khi đó ta có:
y1+y2 -5(x1+x2)=-2-8-5(2-4)=0 ⇒đpcm
VẬY..............
trong mat phang toa do oxy cho duong thang d y=(k-1)x+2 va parabol p y=x^2
chung minh rang bat cu gia tri nao cua k thi dt d luong cat p tai 2 diem phan biet
goi y1 va y2 la tung do giao diem cua duong thang d va p tim k de y1+y2=y1y2
a ) Phương trình hoành độ của đường thẳng (d) và parapo (P) là :
\(x^2=\left(k-1\right)x+2\)
\(\Leftrightarrow x^2-\left(k-1\right)x-2=0\)
\(\Delta=\left(k-1\right)^2+8=k^2-2k+9>0\)
Vì đen - ta lớn hơn 0 nên với mọi k thì (d) luôn cắt (P) tại 2 điểm phân biệt .
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=k-1\\x_1x_2=-2\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(k-1\right)^2+4\\y_1y_2=\left(x_1x_2\right)^2=4\end{matrix}\right.\)
Theo đề bài \(y_1+y_2=y_1y_2\)
\(\Rightarrow\left(k-1\right)^2+4=4\)
\(\Rightarrow k=1\)
a,ve do thi ham so y=\(\dfrac{-3}{2}\)x và y=\(\dfrac{2}{3}\)x tren cung 1 he trục toa do
b,tren do thi ham so y=\(\dfrac{-3}{2}\)x lay diem A co hoanh do la 2 ,Tren do thi ham so y=\(\dfrac{2}{3}\)x,lay diem C co hoanh do la 3.Đo goc AOC,sao do bieu dien B tren mat phang toa do sao cho OABC la hinh vuong