Tìm m để \(x^2-mx+m+3\ge0\) có tập nghiệm là R
tìm m để bpt \(x^2-2x+\left|x-1\right|+m\ge0\) có tập nghiệm là R
(key: \(m\ge1\))
Bpt \(\Leftrightarrow\left(x-1\right)^2+\left|x-1\right|+m-1\ge0;\forall x\)
Đặt \(t=\left|x-1\right|;t\ge0\)
Bpttt: \(t^2+t+m-1\)\(\ge0\) (1)
Để bpt có tập nghiệm là R khi (1) có nghiệm với mọi \(t\ge0\)
Đặt \(f\left(t\right)=t^2+t-1+m;t\ge0\) có đỉnh \(I\left(-\dfrac{1}{2};f\left(-\dfrac{1}{2}\right)\right)\)
\(\Rightarrow\) Hàm \(f\left(t\right)\) đồng biến trên \([0;+\infty)\)
Để \(f\left(t\right)\ge0;\forall t\ge0\)\(\Leftrightarrow\min\limits f\left(t\right)\ge0\)\(\Leftrightarrow f\left(0\right)\ge0\)\(\Leftrightarrow-1+m\ge0\Leftrightarrow m\ge1\)
Vậy...
Tìm m để bất phương trình \(\dfrac{x+1}{mx^2-4x+m-3}< 1\) có tập nghiệm là R
\(\Leftrightarrow\dfrac{mx^2-5x+m-4}{mx^2-4x+m-3}>0\)
BPT đã cho có tập nghiệm là R khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta_1=25-4m\left(m-4\right)< 0\\\Delta'_2=4-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4m^2+16m+25< 0\\-m^2+3m+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< \dfrac{4-\sqrt{41}}{2}\\m>\dfrac{4+\sqrt{41}}{2}\end{matrix}\right.\)
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
Tìm tham số m để bpt: \(\frac{x+1}{mx^2-4x+m-3}< 1\) có tập nghiệm là R
cho hso \(y=\dfrac{x^3}{3}-mx^2+mx+m-1\). tìm m để \(y'\ge0\) voi moi x thuoc R?
\(y'=x^2-2mx+m\)
\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow m^2-m\le0\Leftrightarrow0\le m\le1\)
Tìm m thỏa mãn
a) \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0\) có tập nghiệm S=R
b) \(\left(m+1\right)x^2-2mx-\left(m-3\right)< 0\) vô nghiệm
c) \(f\left(x\right)=-x^2+2x+m-2018< 0\forall x\in R\)
d) \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm
Tìm m để hệ phương trình sau có nghiệm
\(\left\{{}\begin{matrix}-x^2+2x+3\ge0\\mx-3\le x+1\end{matrix}\right.\)
Tìm m thỏa mãn
a) \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\) nghiệm đúng với mọi x thuộc R
b) \(x^2-2\left(m-1\right)x+4m+8\ge0\) nghiệm đúng với mọi x thuộc R
Tìm m để phương trình có tập nghiệm là R
1 ≤ \(\dfrac{3x^2-mx+5}{2x^2-x+1}\)
⇔ 3x2 - mx + 5 ≥ 2x2 - x + 1
⇔ x2 + (1 - m)x + 4 ≥ 0
⇔ x2 - (m - 1)x + 4 ≥ 0
⇔ \(\left\{{}\begin{matrix}a>0\\\Delta\ge0\end{matrix}\right.\) (a là hệ số bậc 2)
⇔ m2 - 2m + 1 - 4.4 ≥ 0
⇔ m2 - 2m - 15 ≥ 0
⇔ \(\left[{}\begin{matrix}m\le-3\\m\ge5\end{matrix}\right.\)
Khai bút sớm dữ !!! Chúc bạn năm nay học giỏi gấp 3,14 lần năm ngoái nha