Cho M=(-a+b)-(b+c-a)+(c-a)
(a,b,c∈Z;a<0)
Chứng minh rằng M luôn luôn dương.
cho a,b,c khác 0 và x,y,z t/m: a+b+c=x+y+z=x/a+y/b+z/c=0 C/m a^2x + b^2y + c^2z =0
Cho a,b,c thuộc Z và a+b+c=4. C/m M= (a+b)(b+c)(c+a)-abc chia hết cho 4
Cho a,b,c,x,y,z khác 0 thõa mãn x/a = y/b=z/c . Chứng minh rằng : a^2/x + b^2/y + c^2/z = ( a+ b + c ) ^2 /x+Y+Z
1 . Cho các số hữu tỉ x, y, z : x=a/b ; y= c/d ; z= m/n . trong đó : m= a+c/2 ; n= b+d/2. biết x = y. hãy so sánh x với z;y ?
2 . cho các số hữu tỉ x, y, z : x=a/b ; y= c/d ; z= m/n . biết ad-bc=1; cn-dm = 1 ; b,d,n >0
a ) So sánh các số x,y,z
b ) Cho t = a+m /b+n (b+n khác 0 ). So sánh y với t
3. Cho 6 số nguyên dương a<b<c<d<m<n . Chứng minh rằng a+c+m /a+b+c+d+m+n
Cho a, b, c, m ∈ Z. Chứng minh rằng nếu a ⋮ m, b ⋮ m và a + b + c ⋮ m thì c ⋮ m
`a vdots m,b vdots m`
`=>a+b vdots m`
Mà `a+b+c vdots m`
`=>a+b+c-(a+b) vdots m`
`=>a+b+c-a-b vdots m`
`=>(a-a)+(b-b)+c vdots m`
`=>0+0+c vdots m`
`=>c vdots m(forall a,b,c in Z)`
1) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2.C/m:(a-b)^2017+(b-c)^2018+(c-a)^2016
2)Tìm GT của x,y,z biết x+y+z=6 và x^2+y^2+z^2=12
1)Cho A=111...1(2n chữ số 1),B=111...1(n+1 chữ số 1), C=666...6(chữ số 6).C/m:A+B+C+8 là số chính phương
2)C?m:Các số sau là các số chính phương
a)A=999...9000...025(n chữ số 9 và n chữ số 0)
b)B=999...9000...01(n chữ số 9 và n chữ số 0)
c)C=444...4888...89(n chữ số 4 và n chữ số 8)
d)D=111...1222...25(n chữ số 1 và n+1 chữ số 2)
3)Tìm số chính phương n để:n^2-2006 là số chính phương
Cho các số thực a, b, c thỏa mãn: 4*b*z - 5*x*y / 3*a = 5*c*x - 3*a*z / 4*b = 3*a*y - 4*b*x / 5*c. Chứng minh rằng: x/3*a = y/4*b = z/5*c
Cho a,b,c,x,y,z thoả mãn x/a=y/b=z/c
C/m rằng cy-bz/a=az-cx/b=bx-ay/c
Cho các số thực a, b, c khác 0 thảo mãn: a + b + c, a^2 + b^2 + c^2 = 4 và x/a = y/b = z/c. Chứng minh rằng x*y + y*z + z*x = 0
Bài 1: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2015
Tìm max cua a/b +c/d
Bài 2: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2016
Tìm min cua (a+b)/(a.c + b.c)