Giai hpt:
\(\sqrt{x-\sqrt{1-x}}+\sqrt{x}=2\)
Giai hpt:
\(\sqrt{x-\sqrt{1-x}}+\sqrt{x}=2\)
giai hpt
\(\left\{{}\begin{matrix}\sqrt{y}\left(\sqrt{x+3}+\sqrt{x}\right)=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{y}\left(\sqrt{x+3}+\sqrt{x}\right)=3\left(1\right)\\\sqrt{x}+\sqrt{y}=x+1\left(2\right)\end{matrix}\right.\)
ĐKXĐ: x;y≥0
Ta thấy: \(x+3\ne x\Rightarrow\sqrt{x+3}-\sqrt{x}\ne0\)
=>(1)<=>\(\frac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{x+3}\). Thay vào (2):
\(\sqrt{x+3}=x+1\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-2=0\end{matrix}\right.\Leftrightarrow x=1\) (tm đkxđ)
Thay vào (1) => y=1 (tm đkxđ)
Vậy hệ có nghiệm (x;y)\(\in\){(1;1)}
giai HPT: \(\hept{\begin{cases}2\left(x\sqrt{y+2}-\sqrt{y+2}\right)-x-2y=\frac{5}{2}\\2\left(x-2\right)\sqrt{x+2}+y=-\frac{7}{4}\end{cases}}\)
giai hpt \(\hept{\begin{cases}\sqrt{X}.\left(1+Y\right)=2Y\\\sqrt{Y}.\left(1+Z\right)=2Z\\\sqrt{Z}.\left(1+X\right)=2X\end{cases}}\)
1, Giải hpt : \(\sqrt{x}+\sqrt{6-y}=2\sqrt{3}\)
\(\sqrt{y}+\sqrt{6-x}=2\sqrt{3}\)
giải hpt: \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{x^2-y^2}\\\sqrt{x}+\sqrt{y}=1\end{cases}}\)
\(\sqrt{x+y}+\sqrt{x-y}=1+\sqrt{\left(x-y\right)\left(x+y\right)}.\\ \left(\sqrt{x+y}-1\right)\left(\sqrt{x-y}-1\right)=0.\)
Chắc bạn cũng biết phải làm gì :))
1,GTLN của \(P=\sqrt{x-2}+2\sqrt{x+1}-x+2013\)
2, nghiệm của hpt \(\left\{{}\begin{matrix}2\sqrt{x}+3y^3=28\\2y^3-5\sqrt{x}=6\end{matrix}\right.\) là \(\left(x,y\right)=\left(...;...\right)\)
3, cho hpt \(\left\{{}\begin{matrix}x-y=2\\mx+y=3\end{matrix}\right.\). tìm m để hpt có nghiệm (x,y) sao cho tích xy đạt GTNN. kết quả m =...
4,cho 2 số a, tm\(a^2+b^2=4a+bc+540\)
GTLN của \(P=23a+4b+2013\)
5, cho đa thức P(x) tm \(P\left(x-1\right)+2P\left(2\right)=x^2\). Giá trị của \(P\left(\sqrt{2013}-1\right)\) bằng ...
Câu 1:
\(ĐK:x\ge2\)
Áp dụng BĐT cauchy ta có:
\(\left(x+1\right)+4\ge2\sqrt{4\left(x+1\right)}=4\sqrt{x+1}\\ \Leftrightarrow2\sqrt{x+1}\le\dfrac{x+5}{2}\)
Ta có \(\left(x-2\right)+1\ge2\sqrt{x-2}\Leftrightarrow\sqrt{x-2}\le\dfrac{x-1}{2}\)
\(\Leftrightarrow P\le\dfrac{x+5}{2}+\dfrac{x-1}{2}-x+2013=x+2-x+2013=2015\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x-2=1\end{matrix}\right.\Leftrightarrow x=3\)
Câu 2:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}10\sqrt{x}+15y^3=140\\4y^3-10\sqrt{x}=12\end{matrix}\right.\left(x\ge0\right)\\ \Leftrightarrow19y^3=152\\ \Leftrightarrow y^3=8\Leftrightarrow y=2\\ \Leftrightarrow2\sqrt{x}+24=28\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy \(\left(x;y\right)=\left(4;2\right)\)
Câu 3:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\my+2m+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=\dfrac{3-2m}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\x=\dfrac{3-2m}{m+1}\end{matrix}\right.\\ \Leftrightarrow xy=\dfrac{5\left(3-2m\right)}{\left(m+1\right)^2}\)
Đặt \(xy=t\)
\(\Leftrightarrow m^2t+2mt+t=15-10m\\ \Leftrightarrow m^2t+2m\left(t+5\right)+t-15=0\)
PT có nghiệm nên \(\Delta'=\left(t+5\right)^2-t\left(t-15\right)\ge0\)
\(\Leftrightarrow10t+25+15t\ge0\Leftrightarrow t\ge-1\)
Vậy \(xy_{min}=-1\Leftrightarrow\dfrac{5\left(2m-3\right)}{\left(m+1\right)^2}=1\Leftrightarrow m^2-8m+16=0\Leftrightarrow m=4\)
Câu 4: \(a^2+b^2=4a+bc+540\)
c đâu ra vậy?
Câu 5:
Thay \(x=3\Leftrightarrow P\left(2\right)+2P\left(2\right)=3^2\Leftrightarrow P\left(2\right)=3\)
Thay \(x=\sqrt{2013}\)
\(\Leftrightarrow P\left(\sqrt{2013}-1\right)+2P\left(2\right)=\left(\sqrt{2013}\right)^2=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)+6=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)=2007\)
Bai 1: A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) B= \(\left(\dfrac{\sqrt{X}+1}{\sqrt{X}-1}-\dfrac{\sqrt{X}-1}{\sqrt{X}+1}\right)\) : \(\dfrac{\sqrt{X}}{\sqrt{X}-1}\) ( X> 0, X≠1)
A) Rut B
b) Tim x de gia tri cua A va B trai dau
Bai 2: cho hpt \(\left\{{}\begin{matrix}x-2y=4m-5\\2x+y=3m\end{matrix}\right.\)
a) giai pt khi m=3
b) Tim de pt co nghiem (x,y) thoa man \(\dfrac{2}{x}-\dfrac{1}{y}=-1\)
(mink dag can gap)
Bài 2:
a) Thay m=3 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}x-2y=7\\2x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=14\\2x+y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5y=5\\x-2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=7+2y=5\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là (x,y)=(5;-1)
Giải hpt :
\(\left\{{}\begin{matrix}x+2y-1-2\sqrt{2xy+x-4y-2}=0\\\sqrt{x-2}+3\sqrt{2y+1}=4\end{matrix}\right.\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2\\y\ge-\dfrac{1}{2}\end{matrix}\right.\)
Ta có \(\left\{{}\begin{matrix}x+2y-1-2\sqrt{2xy+x-4y-2}=0\\\sqrt{x-2}+3\sqrt{2y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)+\left(2y+1\right)-2\sqrt{\left(x-2\right)\left(2y+1\right)}=0\\\sqrt{x-2}+3\sqrt{2y+1}=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x-2}-\sqrt{2y+1}\right)^2=0\\\sqrt{x-2}+3\sqrt{2y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{2y+1}\\4\sqrt{2y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{2y+1}\\2y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{2y+1}\\y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)