Thu gọn biểu thức
B = /x + 2/ + x -1 với x<-2
(mk ghi / là giá trị tuyệt đối)
Bài 1: thu gọn biểu thức
b) (x-y)(x2-2x+y)
c) (x2-y)(x+y2)-(x-y)(x2+xy+y2)
d) 3x(2xy-z)-5y(x2-2)+3xz
b: (x-y)(x^2-2x+y)
\(=x^3-2x^2+xy-x^2y+2xy-y^2\)
\(=x^3-2x^2-x^2y+3xy-y^2\)
c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)
\(=x^2y^2-xy\)
d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)
\(=6x^2y-3xz-5x^2y+10y+3xz\)
\(=x^2y+10y\)
cho biểu thức :\(x\sqrt{2}-\sqrt{2x^2+1+x\sqrt{ }8}\)
A, Rút gọn biểu thức
B,với giá trị nào của x A=-3?
a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)
b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)
\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)
\(\Leftrightarrow2x\sqrt{2}=-4\)
hay \(x=-\sqrt{2}\)
Cho biểu thức : \(H=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)với \(x\ge0\)
a) Rút gọn biểu thức
b) chứng minh H\(\le\)1
rút gọn biểu thức
B= (x+1)^2 - 2(2x -1) (1+ x) + 4x^2 - 4x + 1
\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)
\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(x+1-2x+1\right)^2=\left(2-x\right)^2\)
rút gọn biểu thức
B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1
`@` `\text {Ans}`
`\downarrow`
\(B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1\)
`= x^2 + 2x + 1 - 2(2x^2 + x - 1) + 4x^2 - 4x + 1`
`= 5x^2 - 2x + 2 - 4x^2 - 2x + 2`
`= x^2 - 4x + 4`
\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)
\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(x+1-2x+1\right)^2\)
\(=\left(2-x\right)^2\)
Bài 1: Rút gọn biểu thức
B= (x+y)2-2(x2-y2)+(x-y)2
\(=\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2=\left(x+y-x+y\right)^2=4y^2\)
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a,rút gọn biểu thức
b,tính giá trị của biểu thức với x=3 - \(2\sqrt{2}\)
a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)
\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)
\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)
b) Ta có: \(x=3-2\sqrt{2}\)
\(=2-2\cdot\sqrt{2}\cdot1+1\)
\(=\left(\sqrt{2}-1\right)^2\)
Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được:
\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)
\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)
\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)
\(=\dfrac{1}{\sqrt{2}-1}\)
\(=\sqrt{2}+1\)
Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)
Cho biểu thức M= 2x/x+5+x+30-x^2/x^2-25+-1/x-5
a, rút gọn biểu thức
b, Tìm số nguyên x để M nhận giá trị nguyên
a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)
b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)
Bài 1; Rút gọn biểu thức
b) 1/x-3-1/x+3+2x/9-x2 c) x+1/x-2+4-5x/x3+4x:x-2/x2+4
1.Cho biểu thức A=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
a, rút gọn biểu thức
b, Tìm x để A có giá trị bằng 0
a) \(ĐKXĐ:x>0\)
\(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(\Leftrightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(\Leftrightarrow A=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(\Leftrightarrow A=x-\sqrt{x}\)
b) Để A = 0
\(\Leftrightarrow x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
vậy ...