Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Loan Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 12:47

b: (x-y)(x^2-2x+y)

\(=x^3-2x^2+xy-x^2y+2xy-y^2\)

\(=x^3-2x^2-x^2y+3xy-y^2\)

c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)

\(=x^2y^2-xy\)

d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)

\(=6x^2y-3xz-5x^2y+10y+3xz\)

\(=x^2y+10y\)

vinh le
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 13:07

a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)

b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)

\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)

\(\Leftrightarrow2x\sqrt{2}=-4\)

hay \(x=-\sqrt{2}\)

Ngọc Hoàng Khương Nguyễn
Xem chi tiết
huy giang nguyễn trần
Xem chi tiết
Toru
16 tháng 8 2023 lúc 16:54

\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)

\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(x+1-2x+1\right)^2=\left(2-x\right)^2\)

Khánh Ngan Vũ
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
8 tháng 8 2023 lúc 9:45

`@` `\text {Ans}`

`\downarrow`

\(B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1\)

`= x^2 + 2x + 1 - 2(2x^2 + x - 1) + 4x^2 - 4x + 1`

`= 5x^2 - 2x + 2 - 4x^2 - 2x + 2`

`= x^2 - 4x + 4`

Kiều Vũ Linh
8 tháng 8 2023 lúc 9:46

\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)

\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(x+1-2x+1\right)^2\)

\(=\left(2-x\right)^2\)

Toru
8 tháng 8 2023 lúc 9:54
qnga
Xem chi tiết
ILoveMath
9 tháng 11 2021 lúc 9:56

\(=\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2=\left(x+y-x+y\right)^2=4y^2\)

em ơi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 12:55

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

NoName.155774
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 1 2022 lúc 20:33

a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)

b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)

Loan Tran
Xem chi tiết

loading...

loading...

hello hello
Xem chi tiết
santa
30 tháng 12 2020 lúc 21:06

a) \(ĐKXĐ:x>0\)

\(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(\Leftrightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)

\(\Leftrightarrow A=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(\Leftrightarrow A=x-\sqrt{x}\)

b) Để A = 0

\(\Leftrightarrow x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

vậy ...