Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Thảo Nguyên
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Tuyết Ly
Xem chi tiết
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 16:12

\(A=\dfrac{2x-6+7}{x-3}=2+\dfrac{7}{x-3}\)

Do 2 không đổi nên A lớn nhất khi \(\dfrac{7}{x-3}\) lớn nhất

\(\Rightarrow x-3\) là số dương nhỏ nhất

\(\Rightarrow x-3=1\) (do \(x-3\) nguyên)

\(\Rightarrow x=4\)

Khi đó: \(A=2+\dfrac{7}{4-3}=9\)

Trần Long
Xem chi tiết
HT.Phong (9A5)
16 tháng 9 2023 lúc 5:27

\(D=\dfrac{15}{3\left|2x+1\right|+5}\)

Ta có:

\(\left\{{}\begin{matrix}15>0\\3\left|2x+1\right|\ge5\forall x\end{matrix}\right.\)Nên:

\(\Rightarrow D=\dfrac{15}{3\left|2x-1\right|+5}\le3\left(=\dfrac{15}{5}\right)\forall x\) 

Dấu "=" xảy ra:

\(\dfrac{15}{3\left|2x+1\right|+5}=3\)

\(\Rightarrow3\left|2x+1\right|+5=5\)

\(\Rightarrow3\left|2x+1\right|=0\)

\(\Rightarrow\left|2x+1\right|=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy: \(D_{max}=3\) khi \(x=-\dfrac{1}{2}\)

D = \(\dfrac{15}{3.\left|2x-1\right|+5}\)  vì |2\(x\) - 1| ≥ 0 ∀ \(x\) ⇒3.|2\(x-1\)| + 5 ≥ 5 ∀ \(x\)

⇒D = \(\dfrac{15}{3.\left|2x-1\right|+5}\) ≤ \(\dfrac{15}{5}\) = 3 dấu bằng xảy ra khi 2\(x\) - 1 =0 ⇒ \(x=\dfrac{1}{2}\)

Kết luận Dmin = 3 ⇔ \(x\) = \(\dfrac{1}{2}\)

 

Hạ Nhi
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2021 lúc 22:21

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

Pose Black
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2023 lúc 15:02

a: |2x-3|=1

=>2x-3=1 hoặc 2x-3=-1

=>x=1(nhận) hoặc x=2(loại)

KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)

b: ĐKXĐ: x<>-1; x<>2

\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)

Charlotte Ngân
Xem chi tiết
Lê Phương Linh
Xem chi tiết

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

Kenny
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 9:06

\(\Leftrightarrow Mx^2+M=4x-3\\ \Leftrightarrow Mx^2-4x+M+3=0\\ \text{PT có nghiệm nên }\Delta'=4-M\left(M+3\right)\ge0\\ \Leftrightarrow4-M^2-3M\ge0\\ \Leftrightarrow-4\le M\le1\)

Vậy \(M_{max}=1\Leftrightarrow\dfrac{4x-3}{x^2+1}=1\Leftrightarrow x^2+1-4x+3=0\Leftrightarrow x=2\)

nguyenduckhai /lop85
11 tháng 12 2021 lúc 9:12

undefined

nguyenduckhai /lop85
11 tháng 12 2021 lúc 9:12

undefined