Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Viên đạn bạc
Xem chi tiết
Viên đạn bạc
6 tháng 10 2016 lúc 12:53

Trước chủ nhật 

=))

marian
Xem chi tiết
Tuấn
Xem chi tiết
phan thị minh anh
Xem chi tiết
Neet
4 tháng 9 2016 lúc 22:15

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)

\(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\)\(\left[\begin{array}{nghiempt}x+y+xy=-6\\x+y+xy=4\end{array}\right.\)

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ\(\left\{\left(0;-6\right),\left(4;-2\right)...\right\}\)

Th còn lại giải tương tự

 

 

Lightning Farron
4 tháng 9 2016 lúc 22:20

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow1+x^2y^2+x^2+y^2+4xy+2\left(x+y\right)+2\left(x+y\right)xy=25\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(xy+1\right)=25\)

\(\Leftrightarrow\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)=25\)

\(\Leftrightarrow\left(x+y+xy+1\right)^2=25\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=\pm5\)

Dễ nhé tự lm tiếp

 

 

 

nguyễn văn đạt
Xem chi tiết
Mất nick đau lòng con qu...
21 tháng 1 2019 lúc 18:04

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

Mất nick đau lòng con qu...
21 tháng 1 2019 lúc 18:08

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

Nguyễn Thị Thanh Trúc
Xem chi tiết
Nguyen Thi Ngoc Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2022 lúc 13:33

a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)

Sakura
Xem chi tiết
Kurosaki Akatsu
11 tháng 6 2017 lúc 20:01

Xét đẳng thức , ta thấy :

\(\left|x+\frac{3}{4}\right|\ge0\)

\(\left|y-\frac{1}{5}\right|\ge0\)

\(\left|x+y+z\right|\ge0\)

=> \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)

Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\) (đề bài)

=> \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=-\left(-\frac{3}{4}+\frac{1}{5}\right)=\frac{11}{20}\end{cases}}\)

Rau
11 tháng 6 2017 lúc 20:02

Ta thấy một điều phê phê thế này :v  : |a| >= 0 
=> x+3/4=0 
y-1/5=0
x+y+z=0 
=> x=-3/4 =>y=1/5 => z= 3/4 - 1/5 = 11/20 
còn Trường hợp >0 Loại vì lúc ấy phương trình vô nghiệm rồi :v

Nguyễn Thanh Vân
Xem chi tiết
hattori heiji
21 tháng 11 2017 lúc 22:01

d)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)

=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)

Trần Thị Hảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 13:59

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)