\(\left(x+y\right)^2=\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow x^2+2xy+y^2=xy-x-y+1\)
\(\Rightarrow x^2+2xy+y^2-xy+x+y-1=0\)
\(\Rightarrow x^2+xy+y^2+x+y-1=0\)
\(\Rightarrow2x^2+2xy+2y^2+2x+2y-2=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2x+1\right)-4=0\)
\(\Rightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=4\)
Làm chơi thôi :) hình như đi vào ngõ cụt rồi :)
Đề đúng là: $(x+y)^2=(x-1)(y+1)$
$pt\Leftrightarrow 2x^2+2y^2+2xy-2x+2y+2=0$
$\Leftrightarrow (x-1)^2+(y+1)^2+(x+y)^2=0$
$\Rightarrow x=1;y=-1$