x2y - xy + x2 - y2
a) 5x-5y+ax-ay b) ax+ay+bx+by c) x2+x+ax+a
d) x2y+xy2+xy2-3x-3y e) x2y+xy-x-1 f) x2+2x-2x-4
g) x2+6x-y2+9 h) x2-y2+10x+25 i) x2-8x-24y2+16
\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)
ính giá trị của biểu thức sau:
H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18
Giá trị của biểu thức H = ???
giúp mình vs cần gấp ....mình sẽ hậu tạ
Phân tích tử và mẫu thành nhân tử rồi rút gọn phân thức:
a) x2 + xy +x + y / x2 - xy + x - y
b) x2 - 6x+ 9 / 3x2 - 9x
c) y2 - x2 / x2y - xy2
\(a,=\dfrac{\left(x+1\right)\left(x+y\right)}{\left(x-y\right)\left(x+1\right)}=\dfrac{x+y}{x-y}\\ b,=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}=\dfrac{x-3}{3x}\\ c,=\dfrac{\left(y-x\right)\left(y+x\right)}{xy\left(x-y\right)}=\dfrac{-x-y}{xy}\)
Lời giải:
a.
\(\frac{x^2+xy+x+y}{x^2-xy+x-y}=\frac{x(x+y)+(x+y)}{x(x+1)-y(x+1)}=\frac{(x+y)(x+1)}{(x+1)(x-y)}=\frac{x+y}{x-y}\)
b.
\(\frac{x^2-6x+9}{3x^2-9x}=\frac{(x-3)^2}{3x(x-3)}=\frac{x-3}{3x}\)
c.
\(\frac{y^2-x^2}{x^2y-xy^2}=\frac{(y-x)(y+x)}{-xy(y-x)}=\frac{x+y}{-xy}\)
(x+1)/x2+2x-3 và (-2x)/x2+7x+10
x-y/x2+xy vÀ 2x-3y/xy2
x-2y/2 và x2+y2/2x-2xy
x+2y/x2y+xy2 và x-yy/x2+2xy+y2
a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)
\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)
b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)
\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)
c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)
\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)
Bài 1. Làm tính nhân:
a) 3x(5x2 - 2x - 1);
b) (x2 - 2xy + 3)(-xy);
c) x2y(2x3 - xy2 - 1);
d) x(1,4x - 3,5y);
e) xy(x2 - xy + y2);
f)(1 + 2x - x2)5x;
g) (x2y - xy + xy2 + y3). 3xy2;
h) x2y(15x - 0,9y + 6);
a) \(3x\left(5x^2-2x-1\right)\)
\(=3x.5x^2-3x.2x+3x.\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^3-2xy+3\right)\left(-xy\right)\)
\(=\left(-xy\right).\left(x^2+2xy-3\right)\)
\(=\left(-xy\right).x^2+\left(-xy\right).2xy+\left(-xy\right).\left(-3\right)\)
\(=x^3y-2x^2y^2+3xy\)
mấy câu sau vt lại đè
1/ TÍNH
a)8x(2x –7 )
b)23x (7x2+ 8x –9 )
c)( x2y + 4y2x -xy + y2).7xy
d)(1 + 2x –x2)5x
a) \(=16x^2-56x\)
b) \(=161x^3+184x^2-207x\)
c) \(=7x^3y^2+28x^2y^3-7x^2y^2+7xy^3\)
d) \(=-5x^3+10x^2+5x\)
Phân tích các đa thức sau thành nhân tử:
a/ x( 3- x) – x + 3 b/ 3x2 – 5x – 3xy + 5y c/ x2 – xy – 10x + 10y
d/ 2xy+ x2 + y2 - 16 e/ x2 – y2 – 4x – 4y f/ 9 – 4x2 + 4xy – y2
g/ y3 – 2xy2 + x2y h/ x3 – 3x2 – 4x + 12 i/ x( x- y) + x2 – y2
a: \(=\left(3-x\right)\left(x+1\right)\)
b: \(=3x\left(x-y\right)-5\left(x-y\right)\)
=(x-y)(3x-5)
c: \(=x\left(x-y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(x-10\right)\)
a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)
b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)
d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)
e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)
f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)
g) \(=y\left(y^2-2xy+x^2-y\right)\)
h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)
Bài 2:Phân tích đa thức thành nhân tử chung
a, 4(2-x)2+xy-2y
b, x(x-y)3-y(y-x)2-y2(x-y)
c, x2y-xy2-3x+3y
d, x(x+y)2-y(x+y2)+xy-x2
a) \(4\left(2-x\right)^2+xy-2y\)
\(=4\left(x-2\right)^2+\left(xy-2y\right)\)
\(=4\left(x-2\right)\left(x-2\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(4x-8\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(4x-8+x-2\right)\)
\(=\left(x-2\right)\left(5x-10\right)\)
\(=5\left(x-2\right)^2\)
a, \(=4\left(x-2\right)^2+y\left(x-2\right)=\left(x-2\right)\left(4x-8+y\right)\)
b, \(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-xy+y^2-y^2\right]=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)=x\left(x-y\right)\left(x^2-2xy+y^2-y\right)\)
c, \(=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\)
d, không phân tích được
c, x2y - xy2 - 3x + 3y
= xy(x-y) - 3(x-y)
= (x-y)(x-3)
tính các giá trị của các biểu thức sau tại: x= -1; y= 1; z= -2
a, A= 4x2 - xy + z2 . x2 - yz
b, B= 3xyz - 2z2/ x2 + 1
c, C= x2y2z3 : y2 + 1/ 2 x2y
b) Thay x=-1; y=1 và z=-2 vào B, ta được:
\(B=\dfrac{3\cdot\left(-1\right)\cdot1\cdot\left(-2\right)-2\cdot\left(-2\right)^2}{\left(-1\right)^2+1}=\dfrac{6-8}{1+1}=\dfrac{-2}{2}=-1\)