Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
An Thy
22 tháng 6 2021 lúc 18:40

\(P=\left(\dfrac{\sqrt[4]{x^2}-\sqrt[4]{x}}{1-\sqrt[4]{x}}+\dfrac{1+\sqrt{x}}{\sqrt[4]{x}}\right)^2-\dfrac{\sqrt{1+\dfrac{2}{\sqrt{x}}+\dfrac{1}{x}}}{1+\sqrt{x}}\)

\(=\left(\dfrac{\sqrt[4]{x}\left(\sqrt[4]{x}-1\right)}{1-\sqrt[4]{x}}+\dfrac{1+\sqrt{x}}{\sqrt[4]{x}}\right)^2-\dfrac{\sqrt{\left(\dfrac{1}{\sqrt{x}}+1\right)^2}}{1+\sqrt{x}}\)

\(=\left(-\sqrt[4]{x}+\dfrac{1+\sqrt{x}}{\sqrt[4]{x}}\right)^2-\dfrac{\dfrac{1}{\sqrt{x}}+1}{1+\sqrt{x}}\)

\(=\left(\dfrac{1}{\sqrt[4]{x}}\right)^2-\dfrac{\dfrac{\sqrt{x}+1}{\sqrt{x}}}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}}=0\)

minh ngọc
Xem chi tiết
HT.Phong (9A5)
31 tháng 8 2023 lúc 13:24

\(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{x-2\sqrt{x}+1}{x-1}\) (ĐK: \(x>0;x\ne4\))

\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(A=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\dfrac{2\sqrt{x}}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(A=\dfrac{2\sqrt{x}+2}{\sqrt{x}-1}\)

manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2023 lúc 19:33

a: ĐKXĐ: x>0

\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

b: ĐKXĐ: x>=0; x<>16

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{x+16}\)

\(=\dfrac{x+16}{x+16}\cdot\dfrac{\sqrt{x}+2}{x-16}=\dfrac{\sqrt{x}+2}{x-16}\)

c: ĐKXĐ: x>=0; x<>25

\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)

\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

d: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{-3}{\sqrt{x}-3}\)

 

C-Chi Nợn
Xem chi tiết
T . Anhh
12 tháng 3 2023 lúc 21:56

Với \(x\ge0;x\ne4\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{x-4}{\sqrt{x}-2}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}-2-3\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}-2}\)

\(=\dfrac{2x-4\sqrt{x}}{x-4}.\dfrac{x-4}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}\)

ngọc ánh 2k8
Xem chi tiết
Gia Huy
8 tháng 7 2023 lúc 7:23

a.

Với \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\) có:

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{x-1}\\ =\dfrac{x+\sqrt{x}}{x-1}-\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}\\ =\dfrac{x+\sqrt{x}}{x-1}-\dfrac{x-2\sqrt{x}+1}{x-1}\\ =\dfrac{x+\sqrt{x}-x+2\sqrt{x}-1}{x-1}\\ =\dfrac{3\sqrt{x}-1}{x-1}=VP\)

b.

Với  \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\) có:

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{1}{x-4}\right)\\ =(\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}-\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}).\left(\dfrac{x-4}{1}\right)\\ =(\dfrac{x-2\sqrt{x}}{x-4}-\dfrac{x+2\sqrt{x}}{x-4}).\left(x-4\right)\\ =\left(\dfrac{x-2\sqrt{x}-x-2\sqrt{x}}{x-4}\right)\left(x-4\right)\\ =\dfrac{-4\sqrt{x}\left(x-4\right)}{x-4}\\ =-4\sqrt{x}=VP\)

nguyen quynh
Xem chi tiết
Nguyễn Thị Ngọc Hân
26 tháng 5 2021 lúc 22:22

\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)

 

Etermintrude💫
26 tháng 5 2021 lúc 22:30

undefined

CHÚC BẠN HỌC TỐT NHÉvui

Nguyễn Thị Ngọc Hân
26 tháng 5 2021 lúc 22:32

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

 

minh ngọc
Xem chi tiết
HaNa
23 tháng 8 2023 lúc 20:32

2)

ĐK: \(x\ge0;x\ne4\)

Biểu thức trở thành:

\(\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{a-4}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-4}-\dfrac{4\sqrt{a}-4}{a-4}\\ =\dfrac{a+2\sqrt{a}+3\sqrt{a}+6}{a-4}-\dfrac{a-2\sqrt{a}-\sqrt{a}+2}{a-4}-\dfrac{4\sqrt{a}-4}{a-4}\\ =\dfrac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{a-4}\\ =\dfrac{4\sqrt{a}+8}{a-4}\\ =\dfrac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\\ =\dfrac{4}{\sqrt{a}-2}\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2023 lúc 10:21

1:

\(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}+1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)

\(=\dfrac{x+2\sqrt{x}-7-\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+2\sqrt{x}-8-x-4\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{-4}\)

\(=\dfrac{-2\sqrt{x}-11}{-4}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-3}=\dfrac{\left(2\sqrt{x}+11\right)\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-3\right)}\)

Liên Phạm Thị
Xem chi tiết
Liên Phạm Thị
7 tháng 5 2022 lúc 12:49

mik cần gấp ạ^^

 

C-Chi Nợn
Xem chi tiết
Hquynh
12 tháng 3 2023 lúc 22:12

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-3\sqrt{x}-2}{x-4}\right):\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\\ =\dfrac{x+2\sqrt{x}+x-\sqrt{x}-2\sqrt{x}+2-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\times\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\\ =\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\times\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\times\dfrac{1}{\sqrt{x}-2}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}\)

⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Xyz OLM
30 tháng 1 2023 lúc 20:47

b) ĐKXĐ : \(x\ne\pm1\)

\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)-\left(6x-4\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1+2x-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)

Xyz OLM
30 tháng 1 2023 lúc 20:40

a) ĐKXĐ : \(x\ge0;x\ne16\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x-4}}\right):\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{x-16}:\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{x+16}{x-16}:\dfrac{x+16}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{x-16}\)

 

Đoàn Trần Quỳnh Hương
30 tháng 1 2023 lúc 20:42

\(=\left(\dfrac{\sqrt{x}.\left(\sqrt{x}-4\right)}{x-4}+\dfrac{4.\left(\sqrt{x}+4\right)}{x-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)

\(=\left(\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\right).\dfrac{\sqrt{x}+2}{x+16}\)

\(=\dfrac{x+16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x+16}\)

\(=\dfrac{1}{\sqrt{x}-2}\)