Rút gọn biểu thức
-3.(x - 4) + 2.(-y).(4 - x) + 7.(x - 4) - 5.(-y).(4 - x)
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Đề bài
Cho x; y là các số thực dương. Rút gọn mỗi biểu thức sau:
\(A = \frac{{{x^{\frac{5}{4}}}y + x.{y^{\frac{5}{4}}}}}{{\sqrt[4]{x} + \sqrt[4]{y}}}\)
\(B = {\left( {\sqrt[7]{{\frac{x}{y}\sqrt[5]{{\frac{y}{x}}}}}} \right)^{\frac{{35}}{4}}}\)
\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)
\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)
Rút gọn các biểu thức sau:
a) 4*(2*y + 3*x) − 3*(x − 3*y) b) x^2 + 2*x − x*(7*x − 3)
ai giúp với ạ
a)
`4*(2y+3x)-3(x-3y)`
`=8y+12x-3x+9y`
`=8y+9y+12x-3x`
`=17y+9x`
b)
`x^2 +2x-x(7x-3)`
`=x^2 +2x-7x^2 +3x`
`=x^2 -7x^2 +2x+6x`
`= -6x^2 +8x`
Bài 1
a, Rút gọn biểu thức sau: P= ( x-4)(x+4)-(x-4)^2
b, Tính : 3(x-y)^2 - 2(x+y)^2 - (x-y)(x+y) tại x= 2 và y = -3
\(a,P=x^2-16-x^2+8x-16=8x-32\\ b,=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\\ =2y^2-10xy=2\cdot9-10\left(-3\right)\cdot2=78\)
bài 3 : rút gọn biểu thức
(x-y) (x+y) (x^2 +y^2) (x^4+y^4)
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\)
\(=x^8-y^8\)
Rút gọn biểu thức sau :
12 + 3.y + 4.x + x.y - 12 + 2.y + 6.x - x - 5.y
\(12+3y+4x+xy-12+2y+6x-x-5y\)
\(=9x+xy\)
\(=x\left(y+9\right)\)
12+3y+4x+xy-12+2y+6x-x-5y=
=9x+xy
=x(9+y)
12 + 3y + 4x + xy -12 + 2y + 6x- x - 5y
=9x +xy
=x(y+9)
bài 1 rút gọn các biểu thức sau:
a) 5(x+4)^2+4(x-5)^2-9(4+x).(x-4)
b) (x+2y)^2+(2x-y)^2-5(x+y).(x-y)-10.(y+3).(y-3)
c) (a+b+c)^2+(a+b-c)^^2-2.(a+b)^2
a) \(=5x^2+40x+80+4\left(x^2-10x+25\right)-9\left(x+4\right)\left(x-4\right)\)
\(=5x^2+40x+80+4x^2-40x+100-9x^2+144\)
\(=9x^2-9x^2+40x-40x+324\)
\(=324\)
b) \(=x^2+4xy+4y^2+4x^2-4xy+y^2-5x^2+5y^2-10y^2+90\)
\(=5x^2-5x^2+10y^2-10y^2+\left(4xy-4xy\right)+90\)
\(=90\)
c)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)
\(=\left(2a^2-2a^2\right)+\left(2b^2-2b^2\right)+2c^2+4ab-4ab+2\left(ac+bc-ac-bc\right)\)
\(=2c^2\)
a) 5( x + 4 )2 + 4( x - 5 )2 - 9( 4 + x )( x - 4 )
= 5( x2 + 8x + 16 ) + 4( x2 - 10x + 25 ) - 9( x2 - 16 )
= 5x2 + 40x + 80 + 4x2 - 40x + 100 - 9x2 + 144
= ( 5x2 + 4x2 - 9x2 ) + ( 40x - 40x ) + ( 80 + 100 + 144 )
= 324
b) ( x + 2y )2 + ( 2x - y )2 - 5( x + y )( x - y ) - 10( y + 3 )( y - 3 )
= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5( x2 - y2 ) - 10( y2 - 9 )
= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5x2 + 5y2 - 10y2 + 90
= ( x2 + 4x2 - 5x2 ) + ( 4xy - 4xy ) + ( 4x2 + y2 + 5y2 - 10y2 ) + 90
= 90
c) ( a + b + c )2 + ( a + b - c )2 - 2( a + b )2
= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 - 2( a + b )2
= ( a + b )2 + 2( a + b )c + c2 + ( a + b )2 - 2( a + b )c + c2 - 2( a + b )2
= [ ( a + b )2 + ( a + b )2 - 2( a + b )2 ] + [ 2( a + b )c - 2( a + b )c ] + ( c2 + c2 )
= 2c2
Rút gọn biểu thức:
a) P= (5x-1)+2x(1-5x)x(4+5x)+(5x+4)^2
b) Q= (x-y)^3+(y+x)^3+(y-x)^3-3xy(x+y)
c) 12(5^2+1)(5^4+1)(5^8+1)(5^16+1)