Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lenna ^-^
Xem chi tiết
Gia Huy
24 tháng 6 2023 lúc 11:19

đánh đề bằng latex cho rõ đi bạn, không biết nào dấu nào biến:v

Sửu Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2021 lúc 10:33

\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{10}{7}\end{matrix}\right.\)

Đoàn Nguyễn
23 tháng 12 2021 lúc 10:34

\(\left(x-20\right).\left(7x+10\right)=0\)
\(=>\left[{}\begin{matrix}x-20=0\\7x+10=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=20\\x=-\dfrac{10}{7}\end{matrix}\right.\)

Nguyễn Hoàng Nam
23 tháng 12 2021 lúc 10:35

7x(x-20)+10(x-20)=0

(x-20)x(7x+10)=0

(x-20)=0 hoặc (7x+10)=0

x=20 hoặc 7x=-10

x=20 hoặc x=-10/7

☞Tᖇì  ᑎGâᗰ ☜
27 tháng 3 2022 lúc 14:39

=41/10

Chuu
27 tháng 3 2022 lúc 14:39

x - 1/2 = 18/5

x = 18/5 + 1/2

x = 41/10

★彡✿ทợท彡★
27 tháng 3 2022 lúc 14:40

\(x-\dfrac{1}{2}=\dfrac{3}{5}\times6\)

\(x-\dfrac{1}{2}=\dfrac{18}{5}\)

\(x=\dfrac{18}{5}+\dfrac{1}{2}\)

\(x=\dfrac{41}{10}\)

30.Phạm Khánh Ngọc
Xem chi tiết
︵✰Ah
8 tháng 12 2021 lúc 16:13

x + (-15) - (-12) =0
x -3 =0
x = 3

Nguyễn Minh Anh
8 tháng 12 2021 lúc 16:15

\(x-3=0\Leftrightarrow x=3\)

vanchat ngo
8 tháng 12 2021 lúc 16:16

x +(-15)-(-12)=0

x +(-3)            =0

x                      =0 -(-3)

x                      = 3

x

My Nguyễn
Xem chi tiết
Phước Nguyễn
6 tháng 8 2016 lúc 19:30

\(ĐKXĐ:\)  \(\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\x-\sqrt{x}+1\ne0\end{cases}}\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)   ( vì \(x-\sqrt{x}+1>0\) )

Ta có:

\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1=x-\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x^3}+1}{x-\sqrt{x}+1}+1\)

\(=x-2\sqrt{x}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1=x-2\sqrt{x}+\sqrt{x}+1+1\)

nên  \(A=x-\sqrt{x}+2=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Vậy,  \(A_{min}=\frac{7}{4}\)  khi  \(x=\frac{1}{4}\)

Nguyễn Minh Tuyền
Xem chi tiết
Ben 10
26 tháng 8 2017 lúc 20:28

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

alibaba nguyễn
28 tháng 8 2017 lúc 14:17

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

alibaba nguyễn
28 tháng 8 2017 lúc 14:21

2/ \(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)

Đặt \(\sqrt{5-x^2}=a\ge0\) thì ta có hệ

\(\hept{\begin{cases}x+a+ax=5\\a^2+x^2=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+a+ax=5\\\left(a+x\right)^2-2ax=5\end{cases}}\)

Tới đây thì đơn giản rồi. Đặt \(\hept{\begin{cases}a+x=S\\ax=P\end{cases}}\) giải tiếp sẽ ra

16. Nguyễn Ngọc Khuê - L...
Xem chi tiết
2611
23 tháng 5 2023 lúc 17:11

Đề trước đó: 

(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x

<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x

<=>x^2-11x-6=0

<=>x^2-2x. 11/2 + 121/4-145/4=0

<=>(x-11/2)^2=145/4

<=>|x-11/2|=căn(145)/2

<=>x=[11+-căn(145)]/2

Hatsune Miku
Xem chi tiết
My Nguyễn
Xem chi tiết