Giai phương trình với a là hằng số.
a) a(ax+1) = x(a+2)+2
b)\(\dfrac{x-a}{3}=\dfrac{x+3}{a}-2\)
giải phương trình sau
\(\dfrac{x-a}{a+3}+\dfrac{x-3}{a-3}=\dfrac{6a}{9-a^2}\)với a là hằng số
ĐKXĐ: x\(\ne3,x\ne-3\)
\(\Rightarrow\left(x-a\right)\left(a-3\right)+\left(x+3\right)\left(a+3\right)=-6a\)
\(\Leftrightarrow xa-3x-a^2+3a+ax+3x+3a+3=-6a\)
\(\Leftrightarrow2ax-a^2+12a+3=0\) \(\Leftrightarrow2ax=a^2-12a-3\Leftrightarrow x=\dfrac{a^2}{2}-6a-\dfrac{3}{2}\)(TM)
Vậy...
\(a.\dfrac{2}{a}x^2y^3z\left(-x^3yz\right)\) (a,b là hằng số)
\(b.-ax\left(xy^3\right)\dfrac{1}{4}\left(-by\right)^3\) (a,b là hằng số)
a: \(=-\dfrac{2}{a}\cdot x^2\cdot x^3\cdot y^3\cdot y\cdot z^2=-\dfrac{2}{a}x^5y^4z^2\)
b: \(=-a\cdot\dfrac{1}{4}\cdot\left(-b\right)^3\cdot x\cdot xy^3\cdot y^3=\dfrac{1}{4}ab^3x^2y^6\)
a, \(=\dfrac{-2x^5y^3z^2}{a}\)
b, \(=-\dfrac{xa\left(xy^3\right).1\left(-b^3y^3\right)}{4}=\dfrac{xa\left(b^3xy^6\right)}{4}=\dfrac{x^2ab^3y^6}{4}\)
Giải phương trình:
a, \(\dfrac{t}{2a}-\dfrac{4a}{3}=1\)
b, \(\dfrac{x-2a}{b}=2+\dfrac{x+b}{a}\) (a, b là các hằng số)
Cho đa thức \(P\left(x\right)=ax^2+bx+c\). Trong đó \(a,b,c\) là các hằng số thỏa mãn \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a\ne0\). Tính \(\dfrac{P\left(-2\right)-3P\left(1\right)}{a}\).
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
Một chất điểm chuyển động đều với phương trình quỹ đạo\(\dfrac{x^2}{a^2}\) +\(\dfrac{x^2}{b^2}\)=1 (a và b là hằng số dương). Tìm bán kính quỹ đạo tại điểm x=0.
A.R=ab B.R=2ab C.R=\(\sqrt{a^2+b^2}\) D.R=\(\dfrac{a^2}{b}\)
Giai phương trình :
a)\(\dfrac{2x-1}{3}-x=\dfrac{x+3}{4}+2\)
b)\(x^2-4+\left(x-9\right)\left(x-2\right)=0\)
c)\(\dfrac{x-1}{x-3}-\dfrac{1}{x+3}=\dfrac{3x+3}{x^2-9}\)
a: =>4(2x-1)-12x=3(x+3)+24
=>8x-4-12x=3x+9+24
=>-4x-4=3x+33
=>-7x=37
=>x=-37/7
b: =>(x-2)(x+2+x-9)=0
=>(2x-7)(x-2)=0
=>x=2 hoặc x=7/2
c: =>(x-1)(x+3)-x+3=3x+3
=>x^2+2x-3-x+3=3x+3
=>x^2+x-3x-3=0
=>x^2-2x-3=0
=>(x-3)(x+1)=0
=>x=-1
Cho biêt a là hằng số. giải các phương trình sau:
a) x(x+3) +a(a-3) =2(ax-1)
b) x^2+7x-a^2+a+12=0
Giải bất phương trình sau với a là hằng số:
\(\dfrac{x+3}{a}+a>x+4\)
\(\Leftrightarrow\dfrac{x}{a}-x>4-a-\dfrac{3}{a}\)
\(\Leftrightarrow x\left(\dfrac{1}{a}-1\right)>\dfrac{4a-a^2-3}{a}\)
- Nếu \(\dfrac{1}{a}-1>0\Leftrightarrow0< a< 1\)
\(\Rightarrow x>\dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-1\right)}\Leftrightarrow x>a-3\)
- Nếu \(\dfrac{1}{a}-1< 0\Leftrightarrow\left[{}\begin{matrix}a< 0\\a>1\end{matrix}\right.\)
\(\Rightarrow x< \dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-a\right)}\Leftrightarrow x< a-3\)
1) gọi x là nghiệm trong khoảng \(\left(\pi;2\pi\right)\) của phương trình \(cosx=\dfrac{\sqrt{3}}{2}\) nếu biểu diễn \(x=\dfrac{a\pi}{b}\) với a, b là 2 số nguyên và \(\dfrac{a}{b}\) là phân số tối giản thì ab bằng bao nhiêu
2) phương trình \(sinx=\dfrac{1}{2}\) có bao nhiêu nghiệm trên đoạn \(\left[0;20\pi\right]\)
3) phương trình \(cos\)(x + 30độ ) = \(\dfrac{1}{2}\) có nghiệm là