Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen minh thường
Xem chi tiết
Nguyễn Trọng Chiến
9 tháng 2 2021 lúc 17:49

ĐKXĐ: x\(\ne3,x\ne-3\) 

\(\Rightarrow\left(x-a\right)\left(a-3\right)+\left(x+3\right)\left(a+3\right)=-6a\) 

\(\Leftrightarrow xa-3x-a^2+3a+ax+3x+3a+3=-6a\)

\(\Leftrightarrow2ax-a^2+12a+3=0\) \(\Leftrightarrow2ax=a^2-12a-3\Leftrightarrow x=\dfrac{a^2}{2}-6a-\dfrac{3}{2}\)(TM)

Vậy...

Khánh Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 10:29

a: \(=-\dfrac{2}{a}\cdot x^2\cdot x^3\cdot y^3\cdot y\cdot z^2=-\dfrac{2}{a}x^5y^4z^2\)

b: \(=-a\cdot\dfrac{1}{4}\cdot\left(-b\right)^3\cdot x\cdot xy^3\cdot y^3=\dfrac{1}{4}ab^3x^2y^6\)

Nguyễn Huy Tú
5 tháng 3 2022 lúc 10:31

a, \(=\dfrac{-2x^5y^3z^2}{a}\)

b, \(=-\dfrac{xa\left(xy^3\right).1\left(-b^3y^3\right)}{4}=\dfrac{xa\left(b^3xy^6\right)}{4}=\dfrac{x^2ab^3y^6}{4}\)

Gojo Satoru
Xem chi tiết
White Silver
Xem chi tiết
Trên con đường thành côn...
1 tháng 8 2021 lúc 21:10

undefined

anbe
1 tháng 8 2021 lúc 21:16

P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )

Ta có : 

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)

Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)

\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)

Thế Trần Quang
Xem chi tiết
Quang Minh Nguyễn
16 tháng 11 2021 lúc 21:13

chọn b

Ánh Ngọc Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2023 lúc 0:18

a: =>4(2x-1)-12x=3(x+3)+24

=>8x-4-12x=3x+9+24

=>-4x-4=3x+33

=>-7x=37

=>x=-37/7

b: =>(x-2)(x+2+x-9)=0

=>(2x-7)(x-2)=0

=>x=2 hoặc x=7/2

c: =>(x-1)(x+3)-x+3=3x+3

=>x^2+2x-3-x+3=3x+3

=>x^2+x-3x-3=0

=>x^2-2x-3=0

=>(x-3)(x+1)=0

=>x=-1

Nguyễn Thu Thủy
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2021 lúc 13:32

\(\Leftrightarrow\dfrac{x}{a}-x>4-a-\dfrac{3}{a}\)

\(\Leftrightarrow x\left(\dfrac{1}{a}-1\right)>\dfrac{4a-a^2-3}{a}\)

- Nếu \(\dfrac{1}{a}-1>0\Leftrightarrow0< a< 1\)

\(\Rightarrow x>\dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-1\right)}\Leftrightarrow x>a-3\)

- Nếu \(\dfrac{1}{a}-1< 0\Leftrightarrow\left[{}\begin{matrix}a< 0\\a>1\end{matrix}\right.\)

\(\Rightarrow x< \dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-a\right)}\Leftrightarrow x< a-3\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2023 lúc 20:41

loading...  loading...  loading...