Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Trong không gian Oxyz, cho hai điểm A(1;-2;3) và B(3;4;-1) và đường thẳng delta: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{2}\) . Gọi (P) là ax +by +cz-13=0 là mặt phẳng chứa delta và cách đều hai điểm A,B . Tổng S = a+b+c bằng
cho ba số thực dương a b c thỏa mãn ab+bc+ac≤1. tìm giá trị nhỏ nhất của biểu thức P biết:
P= \(\dfrac{1}{\sqrt{a^2+b^2-abc}}+\dfrac{1}{\sqrt{a^2+c^2-abc}}+\dfrac{1}{\sqrt{c^2+b^2-abc}}\)
Chứng minh bất đẳng thức: \(\left(1+a\right)^x>\dfrac{x\left(x-1\right)}{2}a^2\) với x là biến và a là hằng số dương bất kì
có bao nhiêu số thực dương a,b sao cho ab+1≤b. Biểu thức P=\(\dfrac{a+b}{\sqrt{a^2}-ab+3b^2}+\dfrac{2a-b}{6\left(a+b\right)}\) đạt giá trị lớn nhất.
Trong không gian Oxyz cho hai điểm A(1;3;0), B(-3;1;4) và đường thẳng \(\Delta:\dfrac{x-2}{-1}=\dfrac{y+1}{1}=\dfrac{\text{z}-2}{3}\) . Xét khối nón (N) có đỉnh có tọa độ nguyên thuộc đường thẳng \(\Delta\) và ngoại tiếp mặt cầu đường kính AB. Khi (N) có thể tích nhỏ nhất thì mặt phẳng chứa đường tròn đáy của (N) có phương trình dạng ax+by+cz +1=0. Giá trị a+b+c bằng:
A.1
B.3
C.5
D.-6
Viết phương trình đường thẳng ∆ đi qua A(1; 1; 1) vuông góc với đường thẳng d: \(\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-1}{2}\) sao cho khoảng cách từ B(2; 0; 1) đến ∆ nhỏ nhất.
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
cho hai số a,b là hai số thực đều lớn hơn 1. giá trị nhỏ nhất của biểu thức s=
\(\dfrac{1}{log_{b\sqrt[3]{a}}}\)+\(\dfrac{1}{log\sqrt[3]{ab^2}}\)