giải phương trình
x²-7x+3 =0
Giải phương trình: \(6x^4+7x^3-36x^2+7x+6=0\)
Xét thấy x = 0 không thỏa mãn pt
Ta có : \(6x^4+7x^3-36x^2+7x+6=0\)
\(\Leftrightarrow x^2\left(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}\right)=0\)
\(\Leftrightarrow6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-36-12=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-48=0\)
Đặt \(x+\frac{1}{x}=a\)
\(pt\Leftrightarrow6a^2-7a-48=0\)
\(\Leftrightarrow6\left(a^2-\frac{7}{6}a-8\right)=0\)
\(\Leftrightarrow a^2-\frac{7}{6}a-8=0\)
\(\Leftrightarrow a^2-2\cdot a\cdot\frac{7}{12}+\frac{49}{144}-\frac{1201}{144}=0\)
\(\Leftrightarrow\left(a-\frac{7}{12}\right)^2=\left(\frac{\pm\sqrt{1201}}{12}\right)^2\)
\(\Leftrightarrow a=\frac{\pm\sqrt{1201}+7}{12}\)
\(\Leftrightarrow x+\frac{1}{x}=\frac{\pm\sqrt{1201}+7}{12}\)
Giải nốt nha bạn. Nghiệm hơi xấu
Giải phương trình: \(6x^4+7x^3-36x^2+7x+6=0\).
các bạn giúp mình với nhé...
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(6\left(a^2-2\right)+7a-36=0\)
\(\Leftrightarrow6a^2+7a-48=0\)
Nghiệm xấu
Giải phương trình: \(x^4-7x^3+18x^2-21x+9=0\)
\(PT\Leftrightarrow\left(x^4-x^3\right)-\left(6x^3-6x^2\right)+\left(12x^2-12x\right)-\left(9x-9\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)-6x^2\left(x-1\right)+12x\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(3x-9\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3x\left(x-3\right)+3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) (do \(x^2-3x+3>0\forall x\))
Vậy..
giải phương trình
(3x-2) {2(x+3)/7- 4x-3/5)}=0
(3,3-11x) { 7x+2/5+2(1-3x)/3}=0
3/7x-1=1/7x(3x-7)
mik cần gấp chiều mai mik phải nộp r
a: \(\left(3x-2\right)\cdot\left(\dfrac{2}{7}\left(x+3\right)-\dfrac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\dfrac{2}{7}x+\dfrac{6}{7}-\dfrac{4}{5}x+\dfrac{3}{5}\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-\dfrac{18}{35}x+\dfrac{51}{35}\right)=0\)
=>x=2/3 hoặc x=51/18=17/6
b \(\left(3.3-11x\right)\left(\dfrac{7x+2}{5}+\dfrac{2\left(1-3x\right)}{3}\right)=0\)
\(\Leftrightarrow\left(-10x+3\right)\left(21x+6+10-30x\right)=0\)
\(\Leftrightarrow\left(-10x+3\right)\left(-9x+16\right)=0\)
=>x=3/10 hoặc x=16/9
c: \(\dfrac{3}{7x-1}=\dfrac{1}{7x\left(3x-7\right)}\)
=>21x(3x-7)=7x-1
\(\Leftrightarrow63x^2-154x+1=0\)
\(\text{Δ}=\left(-154\right)^2-4\cdot63=23464\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{154-\sqrt{23464}}{126}\\x_2=\dfrac{154+\sqrt{23464}}{126}\end{matrix}\right.\)
Bài 1 : giải các phương trình
a, 5x+35=0 b, 9x-3=0
c, 24-8x=0 d,-6x+16=0
Bài 2 : giải các phương trình
a, 7x-5=13-5x b, 13-7x=4x-20
c, 2-3x=5x+10 d, 11-9x=3-7x
Bài 3 : tìm giá trị của m sao cho phương trình sau nhận x=-3 làm nghiệm
4x+3m=3-2x
Bài 4: cho hai phương trình ẩn x :
3x+3=0 (1)
5-kx=7 (2)
tìm giá trị của k sao cho nghiệm của phương trình 1 là nghiệm của phương trình 2
Mn Giúp Mk vs Ạ
giải phương trình
a, \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b, \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
c, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
giải các phương trình sau
1. x4-3x3-6x2+3x+1=0
2. x4-7x3+14x2-7x+1=0
3. (x-6)4+(x-8)4=16
giải giúp mìn với đang cần gắp lắm, cảm ơn trước
2. Giải các bất phương trình sau:
a) x(x2 + x - 2) > 0. b) (3x2 + 7x – 6)(5x + 8)2 ≤ 0.
a) Ta có: \(f\left(x\right)=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)
Lập bảng xét dấu
Vậy để \(f\left(x\right)>0\) \(\Leftrightarrow x\in\left(-2;0\right)\cup\left(1;+\infty\right)\)
b) Ta có: \(\left(3x^2+7x-6\right)\left(5x+8\right)^2\le0\)
\(\Leftrightarrow3x^2+7x-6\le0\) \(\Leftrightarrow-3\le x\le\dfrac{2}{3}\)
Vậy \(x\in\left[-3;\dfrac{2}{3}\right]\)
Giải phương trình bậc 3:
a)2x^3+5x^2-3x-10=0
b)x^3-2x^2+7x+66=0
c)x^3+3x-4=0
d)x^3+7x^2-48=0
e)4x^3+4x^2-x+14=0
f)3x^3-4x^2+5x+500=0