Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Quang
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 6 2020 lúc 21:47

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

Đặt vế trái là P

Ta có: \(P=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Hà Minh Hiếu
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Thành Trương
31 tháng 1 2020 lúc 20:50

Hỏi đáp Toán

Khách vãng lai đã xóa
Hoàng Quốc Tuấn
Xem chi tiết
Mai Dũng Phúc
Xem chi tiết
Rimuru tempest
22 tháng 4 2019 lúc 21:01

xét \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

vì a và b là số dương nên \(\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\forall a,b\in R^+\)

vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 2 2022 lúc 21:12

Bài toán cơ bản:

\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\) 

Bunhiacopxki:

\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)

\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
17 tháng 2 2022 lúc 21:18

Cách 2:

Do \(abc=1\), đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

Ta có \(\dfrac{a}{\left(ab+a+1\right)^2}=\dfrac{\dfrac{x}{y}}{\left(\dfrac{x}{z}+\dfrac{x}{y}+1\right)^2}=\dfrac{\dfrac{x}{y}.y^2z^2}{\left(xy+yz+zx\right)^2}=\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}\)...

Từ đó, BĐT cần chứng minh trở thành:

\(\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}+\dfrac{x^2yz}{\left(xy+yz+zx\right)^2}+\dfrac{xy^2z}{\left(xy+yz+zx\right)^2}\ge\dfrac{1}{\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}}\)

\(\Leftrightarrow xyz\left(x+y+z\right)\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\ge\left(xy+yz+zx\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2z+y^2x+z^2y\right)\ge\left(xy+yz+zx\right)^2\)

Thật vậy, áp dụng BĐT Bunhiacopxki:

\(\left(z+x+y\right)\left(x^2z+y^2x+z^2y\right)\ge\left(\sqrt{zx^2z}+\sqrt{xy^2x}+\sqrt{yz^2y}\right)^2=\left(xy+yz+zx\right)^2\) (đpcm)

Ngô thừa ân
Xem chi tiết
tran van
Xem chi tiết
vũ tiền châu
15 tháng 2 2018 lúc 12:42

cái nàyt nghĩ chỉ có cách quy đồng rồi chứng minh BĐT luôn đúng thôi bạn!

^_^

JESSICA
Xem chi tiết
Đinh Đức Hùng
12 tháng 8 2017 lúc 13:19

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)