Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cách 2:
Do \(abc=1\), đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
Ta có \(\dfrac{a}{\left(ab+a+1\right)^2}=\dfrac{\dfrac{x}{y}}{\left(\dfrac{x}{z}+\dfrac{x}{y}+1\right)^2}=\dfrac{\dfrac{x}{y}.y^2z^2}{\left(xy+yz+zx\right)^2}=\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}\)...
Từ đó, BĐT cần chứng minh trở thành:
\(\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}+\dfrac{x^2yz}{\left(xy+yz+zx\right)^2}+\dfrac{xy^2z}{\left(xy+yz+zx\right)^2}\ge\dfrac{1}{\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}}\)
\(\Leftrightarrow xyz\left(x+y+z\right)\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\ge\left(xy+yz+zx\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2z+y^2x+z^2y\right)\ge\left(xy+yz+zx\right)^2\)
Thật vậy, áp dụng BĐT Bunhiacopxki:
\(\left(z+x+y\right)\left(x^2z+y^2x+z^2y\right)\ge\left(\sqrt{zx^2z}+\sqrt{xy^2x}+\sqrt{yz^2y}\right)^2=\left(xy+yz+zx\right)^2\) (đpcm)