§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Kim Oanh


Cho  ba số thực dương  a; b và c thỏa mãn : \(a.b.c=1\)

Chứng minh rằng : \(\dfrac{a}{(ab+a+1)^2}+\dfrac{b}{(bc+b+1)^2}+\dfrac{c}{(ac+c+1)^2}\ge\dfrac{1}{a+b+c}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn  giúp đỡ, em cám ơn nhiều ạ!

Nguyễn Việt Lâm
17 tháng 2 2022 lúc 21:12

Bài toán cơ bản:

\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\) 

Bunhiacopxki:

\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)

\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
17 tháng 2 2022 lúc 21:18

Cách 2:

Do \(abc=1\), đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

Ta có \(\dfrac{a}{\left(ab+a+1\right)^2}=\dfrac{\dfrac{x}{y}}{\left(\dfrac{x}{z}+\dfrac{x}{y}+1\right)^2}=\dfrac{\dfrac{x}{y}.y^2z^2}{\left(xy+yz+zx\right)^2}=\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}\)...

Từ đó, BĐT cần chứng minh trở thành:

\(\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}+\dfrac{x^2yz}{\left(xy+yz+zx\right)^2}+\dfrac{xy^2z}{\left(xy+yz+zx\right)^2}\ge\dfrac{1}{\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}}\)

\(\Leftrightarrow xyz\left(x+y+z\right)\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\ge\left(xy+yz+zx\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2z+y^2x+z^2y\right)\ge\left(xy+yz+zx\right)^2\)

Thật vậy, áp dụng BĐT Bunhiacopxki:

\(\left(z+x+y\right)\left(x^2z+y^2x+z^2y\right)\ge\left(\sqrt{zx^2z}+\sqrt{xy^2x}+\sqrt{yz^2y}\right)^2=\left(xy+yz+zx\right)^2\) (đpcm)


Các câu hỏi tương tự
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết