Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
Cho ba số thực dương a; b và c thỏa mãn : \(a.b.c=1\)
Chứng minh rằng : \(\dfrac{a}{(ab+a+1)^2}+\dfrac{b}{(bc+b+1)^2}+\dfrac{c}{(ac+c+1)^2}\ge\dfrac{1}{a+b+c}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho các số thực dương \(a;b;c\) thỏa mãn :\(ab+bc+ca=abc\). Chứng minh rằng :
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{1}{6}\).
P/s: Em xin phép nhờ quý thầy cô và các bạn bè hỗ trợ và giúp đỡ với ạ. Em cám ơn rất nhiều!
Cho các số thực dương \(a;b;c\) thỏa mãn: \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!
Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\)
Chứng minh rằng : \(\dfrac{a}{b^2+c^2+1}+\dfrac{b}{c^2+a^2+1}+\dfrac{c}{a^2+b^2+1}\le\dfrac{a^3+b^3+c^3}{3}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Cho các số thực dương \(a;b;c\) thỏa mãn \(a.b.c=1\). Chứng minh rằng :
\(\dfrac{a}{a+b^4+c^4}+\dfrac{b}{b+c^4+a^4}+\dfrac{c}{c+a^4+b^4}\le1\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều ạ!
Cho các số thực dương \(a;b;c;d\) thỏa mãn :\(a+b+c+d=4\). Chứng minh rằng :
\(\dfrac{1}{a^2+b+c+d}+\dfrac{1}{b^2+c+d+a}+\dfrac{1}{c^2+d+a+b}+\dfrac{1}{d^2+a+b+c}\le1\)
P/s: Em nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều lắm ạ!
Cho các số thực dương \(a;b;c\). Chứng minh rằng :
\(\dfrac{bc}{2bc+a^2}+\dfrac{ac}{2ca+b^2}+\dfrac{ab}{2ab+c^2}\le1\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán vui lòng hỗ trợ và giúp đỡ em bài toán trong đề cương giữa học kỳ 2 , em cám ơn nhiều ạ!
Cho các số thực dương \(a;b;c\) và thỏa mãn: \(a+b+c=1\). Chứng minh rằng :
\(\dfrac{a}{a+2.\sqrt{a+bc}}+\dfrac{b}{b+2.\sqrt{b+ac}}+\dfrac{c}{c+2.\sqrt{c+ab}}\le\dfrac{3}{5}\)
P/s: Em nhờ quý thầy cô và các bạn hỗ trợ và giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!