Tìm GTNN: \(M=\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
Tìm GTNN của biểu thức M= \(\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)Áp dụng Cô si có
\(M\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=10\)
Dấu "=" \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\leftrightarrow x=4\)
Vậy GTNN của M = 10 <=> x = 4
\(M=\dfrac{\left(x+6\sqrt{x}+9\right)+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)
Do \(\sqrt{x}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+3>0\\\dfrac{25}{\sqrt{x}+3}>0\end{matrix}\right.\)
Áp dụng bđt cô-si ta có:
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)
hay \(M\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
Vậy GTNN của M = 10 khi x = 4
\(\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x+3}}\)
=\(\dfrac{\sqrt{x}+2.3.\sqrt{x}+3^2+25}{\sqrt{x}+3}\)
=\(\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}\)
=\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)
áp dụng cosi
M≥\(^2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}\)=10
\(\sqrt{x}+3\)=\(\dfrac{25}{\sqrt{x}+3}\)⇔x=4
vậy...
Tìm GTNN của B= \(\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
\(B=\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+3}+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\) Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\) ≥ \(2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=2.5=10\)
⇒ \(B_{MIN}=10."="\) ⇔ \(x=4\)
cho A= \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
1, rút gọn A, tìm ĐKXĐ
2, tìm x để A< 1
3 Tìm GTNN khi B= (x-9). A
1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)
Cho \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a, Rút gọn P
b, Tìm GTNN của P
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(P=\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-1+\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Do \(\left\{{}\begin{matrix}2\sqrt{x}\ge0\\\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}\ge0\)
\(\Rightarrow P\ge-1\)
\(P_{min}=-1\) khi \(x=0\)
a) Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
cho 2 biểu thức :
\(A=\dfrac{\sqrt{x}+2}{1-\sqrt{x}};B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
1, Rút gọn B
2, Đặt P=A.B
Tìm x ∈ Z .Tìm GTNN của P
1: \(B=\dfrac{2\sqrt{x}-x-2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{-x}{\left(\sqrt{x}-2\right)\cdot\sqrt{x}}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
Cho: \(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)
a) Tìm x biết \(A=\dfrac{2}{3}\)
b) Tìm A biết \(x=7-2\sqrt{6}\)
c) Tìm GTNN của A
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
tìm gtnn của M = \(\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
ĐK: \(x\ge0\)
Ta có:
M = \(\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
=\(\frac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}\)
= \(\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}\)
=\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\)
Áp dụng BĐT Cauchy cho hai số không âm ta có:
\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\frac{25}{\sqrt{x}+3}}=2.5=10\)
Hay \(M\ge10\)
Dấu '=' xảy ra \(\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\)
\(\Leftrightarrow\sqrt{x}+3=5\)(vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(TM\right)\)
Vậy,...
Học giỏi toán nhé!
ĐK \(x\ge0\)
\(M=\frac{x+16\sqrt{x}+64-10\sqrt{x}-30}{\sqrt{x}+3}\)
\(M=\frac{\left(\sqrt{x}+8\right)^2-10\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(M=\frac{\left(\sqrt{x}+8\right)^2}{\sqrt{x}+3}-10\)
ta có điều kiện \(x\ge0\) vậy \(M_{min}\) khi x=0
\(M_{min}=\frac{\left(\sqrt{0}+8\right)^2}{\sqrt{0}+3}-10=\frac{64}{3}-10=\frac{34}{3}\)
vậy \(M_{min}=\frac{34}{3}\) khi x=0
M=A.B
A=\(\dfrac{x}{\sqrt{x}-2}\),B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
Tìm GTNN của M
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(M=A\cdot B=\dfrac{x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
=>\(M=\dfrac{x}{\sqrt{x}+2}\)
=>\(M=\dfrac{x-4+4}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{4}{\sqrt{x}+2}\)
=>\(M=\sqrt{x}+2+\dfrac{4}{\sqrt{x}+2}-4\)
=>\(M>=2\cdot\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{4}{\sqrt{x}+2}}-4=0\)
Dấu '=' xảy ra khi \(\sqrt{x}+2=\sqrt{4}=2\)
=>\(\sqrt{x}=0\)
=>x=0(nhận)
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1