Tìm x: | 2x + 3/4|= 1/2
Tìm x
a, 3x\(^2\)-2x-1=0
b, \(\dfrac{x+1}{3}+\dfrac{2x+3}{5}=\dfrac{3}{4}\)
a. 3x2 - 2x - 1 = 0
<=> 3x2 - 3x + x - 1 = 0
<=> 3x(x - 1) + (x - 1) = 0
<=> (3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
b. \(\dfrac{x+1}{3}+\dfrac{2x+3}{5}=\dfrac{3}{4}\)
<=> \(\dfrac{20\left(x+1\right)}{60}+\dfrac{12\left(2x+3\right)}{60}=\dfrac{45}{60}\)
<=> 20x + 20 + 24x + 36 = 45
<=> 44x = -11
<=> x = \(-\dfrac{1}{4}\)
a) \(3x^2-2x-1=0\) \(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) Pt\(\Rightarrow\)\(5\cdot4\left(x+1\right)+3\cdot4\cdot\left(2x+3\right)=3\cdot3\cdot5\)
\(\Leftrightarrow44x=-11\Rightarrow x=-\dfrac{1}{4}\)
Tìm x biết :
1) 2x(x-2)-x(2x+1)=3
2)(2x-1)(x-2)-(x+3)(2x-7)=3
3)(x-5)(-x+4)-(x-1)(x+3)=-2x2
1)
2x.(x-2) - x.(2x+1) = 3
=> 2x2 - 4x - 2x2 - x = 3
=> (2x2 - 2x2 ) - (4x+x) = 3
=> -5x = 3
=> x = \(\dfrac{-3}{5}\)
2) (2x-1).(x-2) - (x+3).(2x-7) = 3
=> 2x2 - 4x - x + 2 - 2x2 + 7x - 6x + 21 = 3
=> (2x2 - 2x2) - (4x + 6x + x - 7x) + 2 + 21 = 3
=> -4x = -20
=> x = -20 : (-4)
=> x = 5
3) (x - 5).(-x + 4) - (x - 1).(x + 3) = -2x2
=> Bạn tách tương tự như mấy câu 2 nhé! Nếu không làm được thì bảo mình
tìm x biết (x-2)2-(x-3)(x+3)=6
-4(x-1)2+(2x-1)(2x+1)=-3
a)\(\left(x-2\right)^2-\left(x-3\right)\cdot\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow7-4x=0\)
\(\Rightarrow x=\frac{-7}{4}\)
b)\(-4\cdot\left(x-1\right)^2+\left(2x-1\right)\cdot\left(2x+1\right)=-3\)
\(\Leftrightarrow-4\cdot\left(x^2-2x+1\right)+4x^2-1+3=0\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1+3=0\)
\(\Leftrightarrow8x-2=0\)
\(\Rightarrow x=\frac{2}{8}=\frac{1}{4}\)
Tìm x: 1 + 2 ( x - 1 )( x + 2 ) - 2 ( 2x - 1 )^2 = 3 - 4 ( 2 + 3x ) - 3 (x + 1)
\(1+2\left(x-1\right)\left(x+2\right)-2\left(2x-1\right)^2=3-4\left(2x+3\right)-3\left(x+1\right)\)
<=> \(1+2\left(x^2+x-2\right)-2\left(4x^2-4x+1\right)=3-8x-12-3x-1\)
<=>\(1+2x^2+2x-4-8x^2+8x-2-3+8x+12+3x+1=0\)
<=> \(-6x^2+5x+5=0\)
<=> \(\left[\begin{array}{nghiempt}x=\frac{5+\sqrt{145}}{12}\\x=\frac{5-\sqrt{145}}{12}\end{array}\right.\)
hai nghiệm trên là nghiệm của pt
Tìm x
a,x\(^3\)-4x\(^2\)=-4x
b, \(\dfrac{x-1}{3}=\dfrac{x}{4}+\dfrac{2x-3}{2}\)
\(a,\Leftrightarrow x^3-4x^2+4x=0\\ \Leftrightarrow x\left(x^2-4x+4\right)=0\\ \Leftrightarrow x\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ b,\Leftrightarrow4\left(x-1\right)=3x+6\left(2x-3\right)\\ \Leftrightarrow4x-4=3x+12x-18\\ \Leftrightarrow11x=14\Leftrightarrow x=\dfrac{14}{11}\)
a/ \(x^3-4x^2=-4x\)
\(\Leftrightarrow x^3-4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b/ \(\dfrac{x-1}{3}=\dfrac{x}{4}+\dfrac{2x-3}{2}\)
\(\Leftrightarrow8\left(x-1\right)=6x+12\left(2x-3\right)\)
\(\Leftrightarrow8x-8=6x+24x-36\)
\(\Leftrightarrow8x-8=30x-36\)
\(\Leftrightarrow8x-30x=8-36\)
\(\Leftrightarrow-22x=-28\)
\(\Leftrightarrow x=\dfrac{14}{11}\)
Tìm x : \(\frac{2x-\frac{x-1}{2}}{3}-\frac{\frac{x+1}{2}-\frac{2x-3}{3}}{2}=\frac{\frac{x-1}{2}-1}{3}-\frac{x-3}{4}\)
Bài1.Tìm x biế́́́́́́t́
a)2/3+1/3(2x-1)=-5
b)25%x+2x=4
a) 2/3 + 1/3(2x-1) =-5
1/3(2x-1) = -5 - 2/3
1/3(2x-1) = -17/3
2x-1 = -17/3 : 1/3
2x-1 = -17
2x = -17 + 1
2x = -16
x = -16 : 2
x = -8
b) 25% .x + 2x = 4
x .( 25%+2 ) = 4
x . 9/4 = 4
x = 4 : 9/4
x = 16/9
1) Tìm x, bIết:| 2x+5 |+4\(\ge\)25
2) Tìm giá trị nhỏ nhất của biểu thức:
a) A= |2x-3| - 5
b) B= |2x-1|+|3-2x|+5
3) Tìm giá trị lớn nhất của biểu thức:
A= -|2X+1|+7
B= |2x+3|-|2x+2|
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
Tìm x, biết:
a, 1/4 + 1/3 : 2x = -5
b, ( 3x - 1/4 ) . ( x + 1/2 ) = 0
c, ( 2x - 5 ) . ( 3/2x + 9 ) . ( 0,3x - 12 ) = 0
a)\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=-\frac{21}{3}\)
\(2x=\frac{1}{3}:\left(\frac{-21}{3}\right)\)
\(2x=-\frac{1}{21}\)
\(x=\frac{-1}{42}\)
b)\(\left(3x-\frac{1}{4}\right).\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}3x=\frac{1}{4}\\x=-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{12}\\x=-\frac{1}{2}\end{array}\right.\)
c)\(\left(2x-5\right).\left(\frac{3}{2}x+9\right).\left(0,3x-12\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-5=0\\\frac{3}{2}x+9=0\\0,3x-12=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=5\\\frac{3}{2}x=-9\\0,3x=12\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-6\\x=40\end{array}\right.\)
a) 1/4 + 1/3 : 2x = -5
=> 1/3 : 2x = -5 - 1/4
=> 1/3 : 2x = -21/4
=> 2x = 1/3 : (-21/4) = -4/63
=> x = -4/63 : 2 = -2/63