Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Nhi
Xem chi tiết
Mai Nguyễn
9 tháng 7 2018 lúc 23:25

a) C <=> 3(x2+5x-7)

<=> 3[(x2 + 2.5/2.x +25/4)-25/4 -7]

<=> 3(x+5/2)2-159/4 >= -159/4

Vậy Min C = -159/4 <=> x + 5/2 =0 <=> x=-5/2

b) x2 +2x +5 = x2 +2x +1+4=(x+1)2+4>=4

ta có: D = 5/x2+2x+5 = 5/(x+1)2+4 <= 5/4

Vậy Max D = 5/4 <=> x= -1

Ahihi
Xem chi tiết
Nguyễn Huy Tú
13 tháng 5 2022 lúc 20:32

Ta có \(A\left(1\right)=B\left(-2\right)\Leftrightarrow12+2a+a^2=8-\left|2a+3\right|\left(-2\right)+a^2\)

\(\Leftrightarrow4+2a=2\left|2a+3\right|\)

đk a >= -2 

\(\left[{}\begin{matrix}4a+6=4+2a\\4a+6=-2a-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-1\left(tm\right)\\a=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

Lưu Nguyễn Duy Anh
Xem chi tiết
trần gia bảo
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Kudo Shinichi
5 tháng 10 2019 lúc 22:13

Để phương trình có nghiệm thì : 

\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)

\(\Leftrightarrow a^2+b^2\le5\)

\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)

\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)

Ta có :

\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)

\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 23:15

\(\lim\limits_{x\rightarrow1^-}y=\lim\limits_{x\rightarrow1^-}\left(2x+a\right)=a+2\)

\(\lim\limits_{x\rightarrow1^+}y=\lim\limits_{x\rightarrow1^+}\left(x^2+2ax+a+b\right)=3a+b+1\)

Hàm liên tục tại \(x=1\Leftrightarrow a+2=3a+b+1\Leftrightarrow2a+b=1\) 

\(y'\left(1^+\right)=2\)

\(y'\left(1^-\right)=\left(2x+2a\right)_{x=1^-}=2a+2\)

\(\Rightarrow\left\{{}\begin{matrix}2a+b=1\\2a+2=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2018 lúc 12:02

Đáp án A

Nguyễn Minh Châu
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2023 lúc 0:26

Giới hạn đã cho hữu hạn nên \(x^2+2ax-b=0\) có nghiệm \(x=2\)

\(\Rightarrow4+4a-b=0\Rightarrow b=4a+4\)

\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{x^2+2ax-4a-4}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2a+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{x+2a+2}{x+2}=\dfrac{2a+4}{4}=4\)

\(\Rightarrow a=6\Rightarrow b=28\)

dang pham
Xem chi tiết