Thay x=2 vào A=2, ta được:
\(2^2+2\cdot a\cdot2+3b=2\)
\(\Leftrightarrow4a+3b=2-4=-2\)
Thay x=2 vào A=2, ta được:
\(2^2+2\cdot a\cdot2+3b=2\)
\(\Leftrightarrow4a+3b=2-4=-2\)
Cho biết a và b là các số thực thay đổi sao cho đa thức A(x) = x^2-2ax+2a^2+b^2 - 5 có nghiệm. Hãy tìm giá trị nhỏ nhất của biểu thức P=(a+1)(b+1)
Cho f(x)=6x4-7x3-2ax2+3x+2 và g(x)=x2-x-b với a,b nguyên, biết f(x) chia hết g(x). Tính S=15a+4b Giúp mình nhe 7h tối nộp rồi
Phân tích đa thức sau bằng phương pháp nhóm hạng tử
1) x ( a - b ) + a - b ; 2) x - y - a( x - y ) ; 3) a( x + y ) - x - y ; 4) x( a - b ) - a + b ; 5) x\(^2\) + xy - 2x - 2y
6) 10ax - 5ay + 2x - y ; 7) 2a\(^{^2}\) x - 5by - 5a\(^2\) y + 2bx ; 8) 2ax\(^2\)- bx\(^2\) - 2ax + bx + 4a - 2b ; 9) 2ax - bx + 3cx - 2a + b - 3c
10) ax - bx - 2cx - 2a + 2b + 4c
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Tìm a để (x^3+2ax^2-56) chia hết cho (x-2)
cho P= \(\frac{\text{1-ax(a+x)x}}{\text{2ax -a^2 x^2-1}}:\left[1+\frac{a^2+2ax+x^2}{\left(1-ax\right)^2}\right]\)
a) Chứng minh rằng: Với tất cả các giá trị x \(\ne\)\(\frac{1}{a}\)thì giá trị của P không phụ thuộc vào x
b)Với giá trị của a thì P nhận được giá trị nhỏ nhất hãy tìm giá trị đó
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
1. Tìm Min
a, 3x^2 + 5x
b, (2x-1)^2 - x^2
2.Cho x+y=2. Tìm Min A = x^2+y^2
3. tìm Min A = x^2 + 6y^2 + 4xy - 2x - 8y + 2016
Giúp tôi với
Tìm a,b để:
x^4+x^3+3x^2ax+4 chia hết cho x^2-x+b