2x2y-4xy2+6xy
phan tich da thuc thanh nhan tu
Phân tich da thuc thanh nhan tu :
X^2-2xy+y^2+2x-2y
Bài 2 : rút gon
X^3+2x2y+xy^2 phần ( k viết dau gach ngang dc)x^2-y^2
Câu 1: Phân tích đa thức thành nhân tử
\(x^2-2xy+y^2+2x-2y\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+2\right)\)
Câu 2: Rút gọn
\(\dfrac{x^3+2x^2y+xy^2}{x^2-y^2}=\dfrac{x\left(x^2+2xy+y^2\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x\left(x+y\right)}{x-y}\)
x2 - 2xy + y2 + 2x - 2y = (x2 - 2xy + y2) + (2x - 2y)
= (x - y)2 + 2(x - y)
= (x - y)(x - y + 2)
Câu 2 của bn bị sai đề bài hay sao ý
Câu 2 :
\(\dfrac{x^3+2x^2y+xy^2}{x^2-y^2}\)= \(\dfrac{x\left(x^2+2xy+y^2\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}\)
Rồi bn triệt tiêu x+y ở tử với mẫu đi sẽ dc kết quả là \(\dfrac{x\left(x+y\right)}{x-y}\)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them
6x2-5x-3xy+10x
phan tich da thuc thanh nhan tu
\(=6x^2+5x-3xy\)
\(=x\left(6x+5-3y\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
bai1:phan tich da thuc thanh nhan tu a)5x3y-10x2y2+5xy3 b)x32y-1-125 2y-1 c)x2-6x-4y2+9 d)x2-xy+2y-2x
phan tich da thuc thanh nhan tu 3x^4-48
\(3x^4-48=3\left(x^4-16\right)=3\left[\left(x^2\right)^2-4^2\right]\\ =3\left(x^2-4\right)\left(x^2+4\right)\\ =3\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
phan tich da thuc thanh nhan tu x^3 - 64
\(x^3-64=x^3-4^3\)
\(\Rightarrow\left(x-4\right)\left(x^2+4x+4^2\right)\)
Ta có:\(x^3-64\)
\(=x^3-4^3\)
Áp dụng hằng đẳng thức:\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow x^3-4^3=\left(x-4\right)\left(x^2+4x+4^2\right)\)
x^4 +1997x^2 +1996x+1997
phan tich da thuc thanh nhan tu
\(x^4+1997x^2+1996x+1997=x^4+1997x^2+1997x-x+1997=\left(x^4-x\right)+1997\left(x^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)=\left(x^2-x+1997\right)\left(x^2+x+1\right)\)
x^4 +1997x^2 +1996x+1997
phan tich da thuc thanh nhan tu
\(x^4+1997x^2+1996x+1997\\ =x^4+x^3+x^2-x^3-x^2-x+1997x^2+1997x+1997\)
\(=\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(1997x^2+1997x+1997\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)