so sánh các số thập phân sau:
\(\overline{0,\left(a_1a_2\right)}\) ; \(\overline{0,01\left(a_1a_2\right)}\); \(\overline{0,\left(a_1a_2a_1a_2\right)}\)
Ta đã biết : Trong hệ ghi số thập phân, cứ mười đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước. Mỗi chữ số trong hệ thập phân nhận một trong mười giá trị : \(0,1,2,....,9\)
Số \(\overline{abcd}\) trong hệ thập phân có giá trị bằng :
\(a.10^3+b.10^2+c.10+d\)
Có một hệ ghi số mà cứ hai đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước, đó là hệ nhị phân. Mỗi chữ số trong hệ nhị phân nhận một trong hai giá trị 0 và 1. Một số trong hệ nhị phân, chẳng hạn \(\overline{abcd}\) được kí hiệu là \(\overline{abcd_{\left(2\right)}}\)
Số \(\overline{abcd_{\left(2\right)}}\) trong hệ thập phân có giá trị bằng :
\(a.2^3+b.2^2+c.2+d\)
Ví dụ : \(\overline{1101}_{\left(2\right)}=1.2^3+1.2^2+0.2+1=8+4+0+1=13\)
a) Đổi sang hệ thập phân các số sau : \(\overline{100}2_{\left(2\right)};\overline{111}_{\left(2\right)};\overline{1010}_{\left(2\right)};\overline{1011}_{\left(2\right)}\)
b) Đổi sang hệ nhị phân các số sau : \(5;6;9;12\)
a)
\(\overline{100}_{\left(2\right)}=1.2^2+0.2+0=4+0+0=4\\ \overline{101}_{\left(2\right)}=1.2^2+0.2+1=4+0+1=5\\ \overline{1010}_{\left(2\right)}=1.2^3+0.2^2+1.2+0=8+0+2+0=10\\\overline{1011}_{\left(2\right)}=1.2^3+0.2^2+1.2+1=8+0+2+1=11 \)
Cho \(a_1,a_2,..,a_n\) là các số nguyên dương và n>1.
Đặt \(A=a_1a_2...a_n,\) \(A_i=\dfrac{A}{a_i}\left(i=\overline{1,n}\right)\). CM các đẳng thức sau:
a) \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=A\)
b) \(\left[a_1,a_2,..,a_n\right]\left(A_1,A_2,...,A_n\right)=A\)
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
1.Chứng minh rằng: \(\left(x^m+x^n+1\right)\)chia hết cho \(x^2+x+1\)
2.Tìm một số có 8 chữ số: \(\overline{a_1a_2....a_8}\)thỏa mãn 2 điều kiện a và b sau:
a) \(\overline{a_1a_2a_3}=\left(\overline{a_7a_8}\right)^2\) b) \(\overline{a_4a_5a_6a_7a_8}=\left(\overline{a_7a_8}\right)^3\)
Các thánh giải bài này giúp mik nha!
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
so sánh các số sau: a) 0,(26) và 0,216
b) \(\overline{0,\left(ab\right)}\) ; \(\overline{0,a\left(ba\right)}\) và \(\overline{0,\left(abab\right)}\)
A)0.(26)>0.216
B)0.(ab),0.a(ba) = 0.(abab)
viết thêm chữ số 0 vào số thập phân sau đây để phần thập phân của nó có 3 chữ số
biết số thập phân là 0,91
Ai giúp mik với ak
Để viết số \(0,\left(25\right)\) dưới dạng phân số, ta làm như sau :
\(0,\left(25\right)=0,\left(01\right).25=\dfrac{1}{99}.25=\dfrac{25}{99}\) (vì \(\dfrac{1}{99}=0,\left(01\right)\))
Theo cách trên, hãy viết các số thập phân sau đây dưới dạng phân số :
\(0,\left(34\right);0,\left(5\right);0,\left(123\right)\)
\(0,\left(34\right)=0\left(01\right).34=\dfrac{1}{99}\)
\(0,\left(5\right)=0,\left(1\right).5=\dfrac{1}{9}.5=\dfrac{5}{9}\)
\(0,\left(123\right)=0,\left(001\right).123=\dfrac{1}{999}.123=\dfrac{123}{999}=\dfrac{41}{333}\)
\(\dfrac{34}{99};\dfrac{5}{9};\dfrac{41}{333}.\)
Cho đa giác đều \(A_1A_2...A_{2n}\left(n\ge2,n\in N\right).\) Biết rằng số vecto khác vecto 0 có điểm đầu và điểm cuối thuộc tập hợp điểm \(\left\{A_1,A_2,...,A_{2n}\right\}\) bằng 9 lần số hình chữ nhật có các đỉnh thuộc tập hợp điểm \(\left\{A_1,A_2,...,A_{2n}\right\}\). Tìm n
Số vecto tạo từ 2n điểm là: \(A_{2n}^2\)
Đa giác đều 2n đỉnh có n đường chéo, cứ 2 đường chéo cho ta 1 hình chữ nhật tương ứng, do đó số hình chữ nhật có đỉnh là đỉnh của đa giác đều là: \(C_n^2\)
\(\Rightarrow A_{2n}^2=9C_n^2\Leftrightarrow\dfrac{\left(2n\right)!}{\left(2n-2\right)!}=\dfrac{9.n!}{2!.\left(n-2\right)!}\)
\(\Leftrightarrow2n\left(2n-1\right)=\dfrac{9n\left(n-1\right)}{2}\)
\(\Leftrightarrow n=5\)
So sánh các số thập phân sau : 8,596 và 8,5
Tìm các chữ số x,y thỏa mãn \(\overline{94x34y}\) chia hết cho 36
rút gọn biểu thức A : \(\dfrac{\left(4^2\right)^{17}64^{36}}{8^{19}.32^{38}}\)
So sánh A=6411.1613 và B= 3217.819
\(A=64^{11}\cdot16^{13}=2^{66}\cdot2^{52}=2^{118}\)
\(B=32^{17}\cdot8^{19}=2^{85}\cdot2^{57}=2^{142}\)
Do đó: A<B