Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Huy Hoàng
Xem chi tiết
Phạm Minh Quang
9 tháng 2 2020 lúc 17:29

A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)

\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)

B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)

\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)

Khách vãng lai đã xóa
Phạm Minh Quang
9 tháng 2 2020 lúc 17:12

\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)

\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)

\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)

\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)

Khách vãng lai đã xóa
Phạm Minh Quang
9 tháng 2 2020 lúc 17:21

C = \(4\left(x-1\right)\left(8-5x\right)=\frac{4}{5}.\left(5x-5\right)\left(8-5x\right)\)\(\le\frac{4}{5}.\frac{\left(5x-5+8-5x\right)^2}{4}=\frac{9}{5}\)

\(\Rightarrow\)max C = \(\frac{9}{5}\)\(\Leftrightarrow x=\frac{13}{10}\)(thỏa mãn)

D = \(x\left(3-\sqrt{3}\right)\)(quá dễ rồi)

Khách vãng lai đã xóa
Thiên Dy
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
trần gia bảo
21 tháng 8 2018 lúc 16:59

P=\(\frac{\sqrt{10+2\sqrt{25-9x^2}}}{x}\)

P=\(\frac{\sqrt{10+2\sqrt{\left(5+3x\right)\left(5-3x\right)}}}{x}\)

P=\(\frac{\sqrt{10+10-a^2}}{x}\)(Vì a2=\(\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2\)=10-2\(\sqrt{\left(5+3x\right)\left(5-3x\right)}\))

Dương Lam Hàng
21 tháng 8 2018 lúc 17:20

\(\sqrt{5+3x}-\sqrt{5-3x}=a\)

\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Leftrightarrow5+3x+5-3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}=a^2\)

\(\Leftrightarrow10-2\sqrt{\left(5+3x\right)\left(5-3x\right)}=a^2\)

\(\Leftrightarrow2\sqrt{\left(5+3x\right)\left(5-3x\right)}=10-a^2\)

Thế vào P ta được:

\(P=\frac{\sqrt{10+2\sqrt{25-9x^2}}}{x}=\frac{\sqrt{10+2\sqrt{\left(5-3x\right)\left(5+3x\right)}}}{x}\)

                                                     \(=\frac{\sqrt{10+10-a^2}}{x}\)

                                                       \(=\frac{\sqrt{20-a^2}}{x}\)

P/s: nếu em có sai sót, xin bỏ qua

no name
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
8 tháng 1 2019 lúc 18:38

Câu a :

Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)

\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)

\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)

\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)

\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)

\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)

\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)

\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)

Bạn tự rút gọn nữa nhé :))

Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)

\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)

\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)

Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2020 lúc 0:24

ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=t\ge0\)

\(\Leftrightarrow\frac{1}{\sqrt{t^2+3}}+\frac{1}{\sqrt{3t^2+1}}\le\frac{2}{t+1}\)

Ta có: \(\frac{1}{\sqrt{t^2+3}}+\frac{1}{\sqrt{3t^2+1}}\le\sqrt{2\left(\frac{1}{t^2+3}+\frac{1}{3t^2+1}\right)}=2\sqrt{\frac{2\left(t^2+1\right)}{\left(t^2+3\right)\left(3t^2+1\right)}}\) (1)

Mặt khác ta luôn có:

\(\left(t-1\right)^4\ge0\Leftrightarrow t^4-4t^3+6t^2-4t+1\ge0\)

\(\Leftrightarrow3t^4+10t^2+3\ge2t^4+4t^3+4t^2+4t+2\)

\(\Leftrightarrow\left(t^2+3\right)\left(3t^2+1\right)\ge2\left(t+1\right)^2\left(t^2+1\right)\)

\(\Leftrightarrow\frac{2\left(t^2+1\right)}{\left(t^2+3\right)\left(3t^2+1\right)}\le\frac{1}{\left(1+t\right)^2}\) (2)

(1);(2) \(\Rightarrow VT\le2\sqrt{\frac{1}{\left(1+t\right)^2}}=\frac{2}{t+1}=VP\)

\(\Rightarrow\) BPT đã cho luôn đúng với mọi \(t\) hay nghiệm của BPT là \(x^2\ge2\)

le anh nhat
Xem chi tiết
Diêu Ngọc Diệu Hoa
Xem chi tiết
Trương Nguyên Đại Thắng
Xem chi tiết
Dương Ánh
Xem chi tiết
Hanako-kun
16 tháng 4 2020 lúc 0:12

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\) => bpt vô nghiệm

b/ ĐKXĐ: \(x>1\)

\(bpt\Leftrightarrow x-2< 2\Leftrightarrow x< 4\)

\(\Rightarrow1< x< 4\)

c/ \(\frac{x+2}{3}-2x-2>0\)

\(\Leftrightarrow\frac{x+2-6x-6}{3}>0\Leftrightarrow x+2-6x-6>0\Leftrightarrow x< -\frac{4}{5}\)

d/ \(bpt\Leftrightarrow\frac{3x+5}{2}-\frac{x+2}{3}-x-1\le0\)

\(\Leftrightarrow\frac{9x+15-2x-4-6x-6}{6}\le0\)

\(\Leftrightarrow x\le-5\)