Khi nài sử dụng bất pt loại 1 và bất pt loại 2 vậy mn
mn cho em hỏi pt gì mà kim loại tác dụng với muối thu được khí, kết tủa trắng và kết tủa xanh vậy ạ
Nhiều loại lắm em, kết tủa trắng thường là của AgCl nhé, khí thường không có đâu, còn kết tủa xanh là của bazơ của đồng (VD: Cu(OH)2)
Ba + 2H2O → Ba(OH)2 + H2↑
Ba(OH)2 + CuSO4 → BaSO4↓ + Cu(OH)2↓
\(-Ag+TiCl_4--->AgCl\downarrow+TiCl_3\)
\(-2Al+2NH_3--->2AlN+3H_2\uparrow\)
\(-Ba\left(OH\right)_2+CuSO_4--->Cu\left(OH\right)_2\downarrow+BaSO_4\downarrow\)
Giải pt bằng cách sử dụng bất đẳng thức: \(\sqrt{x^2+x-1}+\sqrt{x^2-x+1}=x^2-x+2\)
M.n ơi giải giúp mìn bài 2 .3 câu giải bất pt và hệ bất pt vs tí nx mìn thi rồi .giúp mìn vs
\(\left\{{}\begin{matrix}3x+1< x-7\\1-2x>x+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x< -8\\3x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 0\end{matrix}\right.\) \(\Rightarrow x< -4\)
Vậy nghiệm của hệ là \(S=\left(-\infty;-4\right)\)
1)Tìm điều kiện của m để pt (m²-4)x²+(m-2)x+3=0 là pt bậc nhất một ẩn
2) Tìm điều kiện của m để bất pt (m²-1)x²+m+6>0 là bất pt bậc nhất một ẩn
1) để pt trên là pt bậc nhất 1 ẩn thì:
\(\left\{{}\begin{matrix}m^2-4=0\\m-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\left(loai\right)\\m=-2\left(nhan\right)\end{matrix}\right.\\m\ne2\end{matrix}\right.\Rightarrow m=-2\)
cho mình hỏi , giải pt ra kết quả 0x= 1 số bất kì; x=0 thì kết luận sao vậy mọi người?
bạn cứ ghi là:
Vậy phương trình có tập nghiệm: S={0}
hoặc
Vậy phương trình có nghiệm: x = 0
bỏ cái x=0 đi
0x=1(vô lý)
xong kết luận là : vậy phương trình vô nghiệm
Tập nghiệm của bất pt
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) Gọi S là nghiệm của bất pt \(\dfrac{x^2+x+3}{x^2-4}\ge1\). Khi đó \(S\cap\left(-2;2\right)\) là tập nào
a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)
⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0
⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}
Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn
Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài
b, tương tự, chuyển vế đổi dấu
áp dụng bất đẳng thức giải pt sau
\(6\sqrt[3]{x^3+2x^2+2x+2}=x^2+9x+19\)
giải pt và bất pt sau:
a.5|2x-1|-3=7
b.(2x+3)(x-2)-x^2+4=0
c. 2x-3/2<1-3x/-5
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
Bất pt \(4m^2\left(2x-1\right)\ge\left(4m^2+5m+9\right)x-12m\) nghiệm đúng vs mọi x khi m bằng?
Bất phương trình tương đương với:
\(\left(4m^2-5m-9\right)x\ge4m^2-12m\)
Nếu \(\left(4m^2-5m-9\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m\ne\dfrac{9}{4}\end{matrix}\right.\), bất phương trình không thể có nghiệm với mọi x
Nếu \(m=-1\), bất phương trình trở thành \(0x\ge16\): vô nghiệm
Nếu \(m=\dfrac{9}{4}\), bất phương trình trở thành \(0x\ge-\dfrac{27}{4}\): phương trình có nghiệm đúng với mọi x
Vậy \(m=\dfrac{9}{4}\)