Giải PT sau áp dụng bất đẳng thức
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
Giải pt
a) x\(^{^2}\)+ 3 - \(\sqrt{2x^2-3x+2}\)= \(\frac{3}{2}\)(x+1)
b) 2x\(^{^2}\)- 9x + \(\sqrt{9x-2x^2}\)+ 6 = 0
vận dụng bđt để giải Pt sau
\(\sqrt{2x-1}+\sqrt{19-2x}=\frac{6}{-x^2+10x-24}\)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+2005\right|=2006x\)x2=2x8+\(\frac{3}{8}\)\(x+\sqrt{3+\sqrt{x}}=3\)\(8x^2+\sqrt{\frac{1}{x}}=\frac{5}{2}\)Giải phương trình (sử dụng bất đẳng thức):
\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)
B1:Giải bpt sau:\(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right).\left(x^6-x^3+x^2-x+1\right)\ge0\)
B2:Cho a;b;c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)
B3:giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
Giải pt \(\left(\sqrt{x+3}+\sqrt{6-x}\right)\left(6\sqrt{2x+6}-2x-13\right)=6\sqrt{2}\)
giải pt \(2x+3+\sqrt{9x^2+8x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Giải bất pt a.(2x-1)/3 < (x+6)/2
b.(5(x-1))/6 -1> (2(x+1)/3