Tìm hằng hằng số a, b sao cho :
x^4 + ax^2 + b chia hết cho x^2 - x + 1
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5
Xác định các hằng số a và b sao cho
a) x^4 + ax + b chia hết cho x^2 - 4
b) x^4 + ax^ + bx - 1 chia hết cho x^2 - 1
c) x^3 + ax + b chia hết cho x^2 + 2x - 2
(Chia đa thức cho đa thức)
Chỉ ý kiến của mk thôi
chưa chắc đúng
Tham khảo nhé
xác định hằng số a, b sao cho x^4+ax^2+b chia hết cho x^2+x+1
Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1
Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )
=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )
<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d
<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d
Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)
Vậy a = b = 1
x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1).
để x^4+ax^2+1 chia hết cho x^2+x+1
thì số dư =0
<=> (a-1)(x-1) =0
<=> a=1
tìm hằng số `a,b,c` sao cho `ax^3 +bx^2 +c` chia hết cho `x+2` và chia `x^2 -1` dư 5.
Đặt \(f\left(x\right)=ax^3+bx^2+c\)
Do \(f\left(x\right)\) chia hết \(x+2\Rightarrow f\left(-2\right)=0\)
\(\Rightarrow-8a+4b+c=0\) (1)
Do \(f\left(x\right)\) chia \(x^2-1\) dư 5
\(\Rightarrow f\left(x\right)=g\left(x\right).\left(x^2-1\right)+5\) với \(g\left(x\right)\) là 1 đa thức bậc nhất nào đó
\(\Rightarrow ax^3+bx^2+c=g\left(x\right)\left(x^2-1\right)+5\) (*)
Thay \(x=1\) vào (*) \(\Rightarrow a+b+c=5\) (2)
Thay \(x=-1\) vào (*) \(\Rightarrow-a+b+c=5\) (3)
(1);(2);(3) \(\Rightarrow\left\{{}\begin{matrix}-8a+4b+c=0\\a+b+c=5\\-a+b+c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{3}\\c=\dfrac{20}{3}\end{matrix}\right.\)
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
Xác định các hằng số a,b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 - x+1
b) ax^3 + bx^2 + 5x -50 chia hết cho x^2 + 3x - 10
c) ax^3 + bx-24 chia hết cho (x+1) (x+3)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
xác định các hằng số a,b sao cho a^4 + ax + b chia hết cho x^2-1
Đặt f(x) = a4 + ax + b
g(x) = x2 - 1= (x - 1)(x + 1)
f(x) \(⋮\) g(x) \(\Leftrightarrow\) f(x) \(⋮\) (x - 1)
f(x) \(⋮\) (x + 1)
Vì f(x) \(⋮\) (x - 1) \(\Rightarrow\) f(-1)= 0
\(\Rightarrow\)0 = (-1)4 + a. (-1) + b= 1 - a + b
\(\Rightarrow\) a - b= 1 (1)
vì f(x) \(⋮\) (x + 1) \(\Rightarrow\) f(1) =0
\(\Rightarrow\) 0= 14 + a.1 + b= 1+ a + b
\(\Rightarrow\) a + b= -1 (2)
Từ (1) và (2) \(\Rightarrow\) 2a =0 \(\Rightarrow\) a= 0
\(\Rightarrow\) b= -1 - 0= -1
chúc bạn học tốt
Đặt f(x) = a4 + ax + b
g(x) = x2 - 1= (x - 1)(x + 1)
f(x) ⋮ g(x) ⇔ f(x) ⋮ (x - 1)
f(x) ⋮ (x + 1)
Vì f(x) ⋮ (x - 1) ⇒ f(-1)= 0
⇒0 = (-1)4 + a. (-1) + b= 1 - a + b
⇒ a - b= 1 (1)
vì f(x) ⋮ (x + 1) ⇒ f(1) =0
⇒ 0= 14 + a.1 + b= 1+ a + b
⇒ a + b= -1 (2)
Từ (1) và (2) ⇒ 2a =0 ⇒ a= 0
⇒ b= -1 - 0= -1
Bài 1: Xác định các hằng số a sao cho:
a) 10x2-7x+a chia hết cho 2x-3
b) 2x2+ax+1 chia cho x-3 dư 4
c) ax5+5x4-9 chia hết cho x-1
Bài 2: Xác định các hằng số a và b sao cho:
a) x4+ax+b chia hết cho x2-4
b) x4+ax3+bx-1 chia hết cho x2-1
c) x3+ax+b chia hết cho x2+2x-2
Bài 3: Xác định các hằng số a và b sao cho:
a) x4+ax2+b chia hết cho x2-x+1
b) ax3+bx2+5x-50 chia hết cho x2+3x-10
c) ax4+bx3+1 chia hết cho (x-1)2
d) x4+4 chia hết cho x2+ax+b