Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hắc Hoàng
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Xua Tan Hận Thù
Xem chi tiết
Xua Tan Hận Thù
10 tháng 11 2017 lúc 20:14

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

Nguyễn Ngọc Gia Khang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
25 tháng 8 2021 lúc 9:46

Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1

Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )

=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )

<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d

<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d

Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)

Vậy a = b = 1

Khách vãng lai đã xóa
lethua
25 tháng 8 2021 lúc 9:47

x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1). 
để x^4+ax^2+1 chia hết cho x^2+x+1 
thì số dư =0 
<=> (a-1)(x-1) =0 
<=> a=1

Khách vãng lai đã xóa
Nguyên Hoàng
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 1 lúc 21:26

Đặt \(f\left(x\right)=ax^3+bx^2+c\)

Do \(f\left(x\right)\) chia hết \(x+2\Rightarrow f\left(-2\right)=0\)

\(\Rightarrow-8a+4b+c=0\) (1)

Do \(f\left(x\right)\) chia \(x^2-1\) dư 5

\(\Rightarrow f\left(x\right)=g\left(x\right).\left(x^2-1\right)+5\) với \(g\left(x\right)\) là 1 đa thức bậc nhất nào đó

\(\Rightarrow ax^3+bx^2+c=g\left(x\right)\left(x^2-1\right)+5\) (*)

Thay \(x=1\) vào (*) \(\Rightarrow a+b+c=5\) (2)

Thay \(x=-1\) vào (*) \(\Rightarrow-a+b+c=5\) (3)

(1);(2);(3) \(\Rightarrow\left\{{}\begin{matrix}-8a+4b+c=0\\a+b+c=5\\-a+b+c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{3}\\c=\dfrac{20}{3}\end{matrix}\right.\)

nguyễn phạm lan anh
Xem chi tiết
anh nguyen
Xem chi tiết
Nguyễn Thành Trương
18 tháng 7 2019 lúc 21:08

\(a) x^4 + ax^2 + b \\ = x^4 + 2x^2 + b + ax^2 - 2x^2\\ = (x^2 + 1)^2 - x^2 + x^2(a + b)\\ = (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\ = (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1). \)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0

\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\ \Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\ = (x^2 + 3x - 10)(cx + d) \\ = ax^3 + bx^2 + 5x - 50\\ = cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)

\(b = d + 3c\\ 5 = 3d - 10c\\ -50 = -10d\)
Vậy \(a = 1, b = 8\)

\(d)f(x)=ax^3+bx-24\)

Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)

f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)

Giải ra ta được a = 2; b = -26

송중기
Xem chi tiết
oOo Min min oOo
15 tháng 10 2017 lúc 12:10

Đặt f(x) = a4 + ax + b

g(x) = x2 - 1= (x - 1)(x + 1)

f(x) \(⋮\) g(x) \(\Leftrightarrow\) f(x) \(⋮\) (x - 1)

f(x) \(⋮\) (x + 1)

Vì f(x) \(⋮\) (x - 1) \(\Rightarrow\) f(-1)= 0

\(\Rightarrow\)0 = (-1)4 + a. (-1) + b= 1 - a + b

\(\Rightarrow\) a - b= 1 (1)

vì f(x) \(⋮\) (x + 1) \(\Rightarrow\) f(1) =0

\(\Rightarrow\) 0= 14 + a.1 + b= 1+ a + b

\(\Rightarrow\) a + b= -1 (2)

Từ (1) và (2) \(\Rightarrow\) 2a =0 \(\Rightarrow\) a= 0

\(\Rightarrow\) b= -1 - 0= -1

chúc bạn học tốt haha

Hà Phương Trần
26 tháng 10 2018 lúc 20:01

Đặt f(x) = a4 + ax + b

g(x) = x2 - 1= (x - 1)(x + 1)

f(x) ⋮ g(x) ⇔ f(x) ⋮ (x - 1)

f(x) ⋮ (x + 1)

Vì f(x) ⋮ (x - 1) ⇒ f(-1)= 0

⇒0 = (-1)4 + a. (-1) + b= 1 - a + b

⇒ a - b= 1 (1)

vì f(x) ⋮ (x + 1) ⇒ f(1) =0

⇒ 0= 14 + a.1 + b= 1+ a + b

⇒ a + b= -1 (2)

Từ (1) và (2) ⇒ 2a =0 ⇒ a= 0

⇒ b= -1 - 0= -1

Qynh Nqa
Xem chi tiết