cho tỉ lệ thức: a/b=c/d. chứng minh
7a-11b/4a+5b=7c-11d/4c+5d
a) Cho (7a - 11b)* ( 4c + 5d )= (4a + 5b)* (7c -11d). Chứng minh : a/b = c/d
b) Cho 4 số tự nhiên a,b,c,d thỏa mãn a + c = 2b và 1/c= 1/2* (1/b + 1/d)
Chứng minh 4 số trên lặp thành 1 tỉ lệ thức
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)Chứng minh:
a)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}^{ }}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
b)\(\left(4a+5b\right)\left(7c-11d\right)=\left(7a-11b\right)\left(4c+5d\right)\)
Cho :
\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)
CMR :
\(\frac{a}{b}=\frac{c}{d}\)
ta có:
\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)
\(\Rightarrow\frac{7a-11b}{7c-11d}=\frac{4a+5b}{4c+5d}\)
\(\Leftrightarrow\frac{7a}{7c}=\frac{11b}{11d}=\frac{4a}{4c}=\frac{5b}{5d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Mặt khác:
\(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrowđpcm\)
ta có:
7a−11b4a+5b=7c−11d4c+5d7a−11b4a+5b=7c−11d4c+5d
⇒7a−11b7c−11d=4a+5b4c+5d⇒7a−11b7c−11d=4a+5b4c+5d
⇔7a7c=11b11d=4a4c=5b5d⇒ac=bd⇔7a7c=11b11d=4a4c=5b5d⇒ac=bd
Mặt khác:
ac=bd⇔ab=cdac=bd⇔ab=cd
⇒đpcm
Cho a/b = c/d .Chứng minh :
a) (a+c)(b-d)=(a-c)(b+d)|
b) (a+c)b=(b+d)a
c)(a+b)(c-d)=(a-b)(c+d)
d) (4a+5b)(7c-11d)=(7a-11d)(4c+5d)
Chứng minh rằng từ tỉ lệ thức a/b = c/d ta rút ra được: 4a - 5b/4a + 5b = 4c - 5d = 4c + 5d
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{4a}{4c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{4a}{4c}=\frac{5b}{5c}=\frac{4a-5b}{4c-5d}\) (1)
\(\frac{4a}{4c}=\frac{5b}{5d}=\frac{4a+5b}{4c+5d}\) (2)
Từ (1) và (2) => \(\frac{4a-5b}{4c-5d}=\frac{4a+5b}{4c+5d}\)
\(\Rightarrow\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\left(đpcm\right).\)
Chúc bạn học tốt!
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)
Các bn giúp mk nhanh nha. Mk sẽ tick cho.
Ta có:
\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)
\(\Rightarrow\dfrac{7a-11b}{7c-11d}=\dfrac{4a+5b}{4c+5d}\)
\(\Leftrightarrow\dfrac{7a}{7c}=\dfrac{11b}{11d}=\dfrac{4a}{4c}=\dfrac{5b}{5d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Mặt khác:
\(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)= k
Vì \(\dfrac{a}{b}=k\) = > a = bk
Vì \(\dfrac{c}{d}=k\) = > c = dk
Ta có: \(\dfrac{7a-11b}{4a+5b}=\dfrac{7.bk-11b}{4.bk+5b}=\dfrac{\left(7.11\right).b.\left(k-1\right)}{\left(4.5\right).b.\left(k+1\right)}\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\)(1)
\(\dfrac{7c-11d}{4c+5d}=\dfrac{7.dk-11d}{4.dk+5d}=\dfrac{\left(7.11\right).d.\left(k-1\right)}{\left(4.5\right).d.\left(k+1\right)}=\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\left(2\right)\)Từ (1) và (2) = > \(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). CM rằng
\(\dfrac{7a-11b}{21a+5b}=\dfrac{7c-11d}{4c+5d}\)
( CM bằng 2 cách)
Sửa đề:
\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a-11b}{4a+5b}=\dfrac{7bk-11b}{4bk+5b}=\dfrac{7k-11}{4k+5}\)
\(\dfrac{7c-11d}{4c+5d}=\dfrac{7dk-11dk}{4dk+5d}=\dfrac{7k-11}{4k+5}\)
Do đó: \(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)
CMR : 7a-11b/4a+5b=7c-11b/4c+5d
Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \((a+c).((b-d)=(a-c).(b-d)\)
b, \((a+c).b=(b+d).a\)
c, \(a.(b-d)=b(a-c)\)
d, \((b+d).c=(a+c).d\)
e, \((b-d).c=(a-c).d\)
f, \((a+b).(c-d)=(a-b).(c+d)\)
g, \((2a+3c).(2b-3d)=(2a-3c).(2b+3d)\)
h, \((4a+3b).(4c-3d)=(4a-3b).((4c+3d)\)
i, \((2a+3b).(4c-5d)=(4a-5b).(2c+3d)\)
k, \((4a+5b).(7c-11d)=(7a-11b).(4c+5d)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\). Khi đó ta có:
a)
\((a+c)(b-d)=(bk+dk)(b-d)=k(b+d)(b-d)\)
\((a-c)(b+d)=(bk-dk)(b+d)=k(b-d)(b+d)=k(b+d)(b-d)\)
\(\Rightarrow (a+c)(b-d)=(a-c)(b+d)\) (đpcm)
b)
\((a+c)b=(bk+dk)b=k(b+d).b=bk(b+d)\)
\((b+d).a=(b+d).bk=bk(b+d)\)
\(\Rightarrow (a+c)b=(b+d)a\)
c)
\(a(b-d)=bk(b-d)\)
\(b(a-c)=b(bk-dk)=bk(b-d)\)
\(\Rightarrow a(b-d)=b(a-c)\)
d)
\((b+d).c=(b+d).dk=dk(b+d)\)
\((a+c)d=(bk+dk)d=k(b+d)d=dk(b+d)\)
\(\Rightarrow (b+d)c=(a+c)d\)
e)
\((b-d).c=(b-d).dk=dk(b-d)\)
\((a-c)d=(bk-dk)d=k(b-d)d=dk(b-d)\)
\(\Rightarrow (b-d)c=(a-c)d\)
f)
\((a+b)(c-d)=(bk+b)(dk-d)=b(k+1)d(k-1)=bd(k-1)(k+1)\)
\((a-b)(c+d)=(bk-b)(dk+d)=b(k-1)d(k+1)=bd(k-1)(k+1)\)
\(\Rightarrow (a+b)(c-d)=(a-b)(c+d)\)
g)
\((2a+3c)(2b-3d)=(2bk+3dk)(2b-3d)=k(2b+3d)(2b-3d)\)
\((2a-3c)(2b+3d)=(2bk-3dk)(2b+3d)=k(2b-3d)(2b+3d)\)
\(\Rightarrow (2a+3c)(2b-3d)=(2a-3c)(2b+3d)\)
h)
\((4a+3b)(4c-3d)=(4bk+3b)(4dk-3d)=b(4k+3)d(4k-3)=bd(4k+3)(4k-3)\)
\((4a-3b)(4c+3d)=(4bk-3b)(4dk+3d)=b(4k-3)d(4k+3)=bd(4k+3)(4k-3)\)
\(\Rightarrow (4a+3b)(4c-3d)=(4a-3b)(4c+3d)\)
i,k: Hoàn toàn tương tự.