Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Huyền Trâm

Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :

a, \((a+c).((b-d)=(a-c).(b-d)\)

b, \((a+c).b=(b+d).a\)

c, \(a.(b-d)=b(a-c)\)

d, \((b+d).c=(a+c).d\)

e, \((b-d).c=(a-c).d\)

f, \((a+b).(c-d)=(a-b).(c+d)\)

g, \((2a+3c).(2b-3d)=(2a-3c).(2b+3d)\)

h, \((4a+3b).(4c-3d)=(4a-3b).((4c+3d)\)

i, \((2a+3b).(4c-5d)=(4a-5b).(2c+3d)\)

k, \((4a+5b).(7c-11d)=(7a-11b).(4c+5d)\)

Akai Haruma
20 tháng 6 2019 lúc 17:00

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\). Khi đó ta có:

a)

\((a+c)(b-d)=(bk+dk)(b-d)=k(b+d)(b-d)\)

\((a-c)(b+d)=(bk-dk)(b+d)=k(b-d)(b+d)=k(b+d)(b-d)\)

\(\Rightarrow (a+c)(b-d)=(a-c)(b+d)\) (đpcm)

b)

\((a+c)b=(bk+dk)b=k(b+d).b=bk(b+d)\)

\((b+d).a=(b+d).bk=bk(b+d)\)

\(\Rightarrow (a+c)b=(b+d)a\)

c)

\(a(b-d)=bk(b-d)\)

\(b(a-c)=b(bk-dk)=bk(b-d)\)

\(\Rightarrow a(b-d)=b(a-c)\)

d)

\((b+d).c=(b+d).dk=dk(b+d)\)

\((a+c)d=(bk+dk)d=k(b+d)d=dk(b+d)\)

\(\Rightarrow (b+d)c=(a+c)d\)

Akai Haruma
20 tháng 6 2019 lúc 17:06

e)

\((b-d).c=(b-d).dk=dk(b-d)\)

\((a-c)d=(bk-dk)d=k(b-d)d=dk(b-d)\)

\(\Rightarrow (b-d)c=(a-c)d\)

f)

\((a+b)(c-d)=(bk+b)(dk-d)=b(k+1)d(k-1)=bd(k-1)(k+1)\)

\((a-b)(c+d)=(bk-b)(dk+d)=b(k-1)d(k+1)=bd(k-1)(k+1)\)

\(\Rightarrow (a+b)(c-d)=(a-b)(c+d)\)

g)

\((2a+3c)(2b-3d)=(2bk+3dk)(2b-3d)=k(2b+3d)(2b-3d)\)

\((2a-3c)(2b+3d)=(2bk-3dk)(2b+3d)=k(2b-3d)(2b+3d)\)

\(\Rightarrow (2a+3c)(2b-3d)=(2a-3c)(2b+3d)\)

h)

\((4a+3b)(4c-3d)=(4bk+3b)(4dk-3d)=b(4k+3)d(4k-3)=bd(4k+3)(4k-3)\)

\((4a-3b)(4c+3d)=(4bk-3b)(4dk+3d)=b(4k-3)d(4k+3)=bd(4k+3)(4k-3)\)

\(\Rightarrow (4a+3b)(4c-3d)=(4a-3b)(4c+3d)\)

i,k: Hoàn toàn tương tự.


Các câu hỏi tương tự
Nguyễn Huyền Trâm
Xem chi tiết
Nguyễn Huyền Trâm
Xem chi tiết
Nguyễn Huyền Trâm
Xem chi tiết
Mitsuha Taki
Xem chi tiết
linhlucy
Xem chi tiết
Mimi Queen Ni
Xem chi tiết
Nguyễn Huyền Trâm
Xem chi tiết
MKelvin
Xem chi tiết
Bùi Lê Trâm Anh
Xem chi tiết